2,964 research outputs found

    Development of an Extended Product Lifecycle Management through Service Oriented Architecture.

    Get PDF
    Organised by: Cranfield UniversityThe aim of this work is to define new business opportunities through the concept of Extended Product Lifecycle Management (ExtPLM), analysing its potential implementation within a Service Oriented Architecture. ExtPLM merges the concepts of Extended Product, Avatar and PLM. It aims at allowing a closer interaction between enterprises and their customers, who are integrated in all phases of the life cycle, creating new technical functionalities and services, improving both the practical (e.g. improving usage, improving safety, allowing predictive maintenance) and the emotional side (e.g. extreme customization) of the product.Mori Seiki – The Machine Tool Company; BAE Systems; S4T – Support Service Solutions: Strategy and Transitio

    An Ontological Approach to Representing the Product Life Cycle

    Get PDF
    The ability to access and share data is key to optimizing and streamlining any industrial production process. Unfortunately, the manufacturing industry is stymied by a lack of interoperability among the systems by which data are produced and managed, and this is true both within and across organizations. In this paper, we describe our work to address this problem through the creation of a suite of modular ontologies representing the product life cycle and its successive phases, from design to end of life. We call this suite the Product Life Cycle (PLC) Ontologies. The suite extends proximately from The Common Core Ontologies (CCO) used widely in defense and intelligence circles, and ultimately from the Basic Formal Ontology (BFO), which serves as top level ontology for the CCO and for some 300 further ontologies. The PLC Ontologies were developed together, but they have been factored to cover particular domains such as design, manufacturing processes, and tools. We argue that these ontologies, when used together with standard public domain alignment and browsing tools created within the context of the Semantic Web, may offer a low-cost approach to solving increasingly costly problems of data management in the manufacturing industry

    Generic PLM system for SMEs: Application to an equipment manufacturer

    Get PDF
    For several years, digital engineering has increasingly taken a more important place in the strategic issues of mechanical engineering companies. Our proposition is an approach that enables technical data to be managed and used throughout the product life-cycle. This approach aims to provide assistance for costing, development and industrialization of the product, and for the capitalization, the reuse and the extension of fundamental knowledge. This approach has been experimented within several companies. This paper presents the case in a company environment that designs and produces families of ship equipment parts

    Framework for Product Lifecycle Management integration in Small and Medium Enterprises networks

    Get PDF
    In order to improve the performance of extended enterprises, Small and Medium Enterprises (SMEs) must be integrated into the extended networks. This integration must be carried out on several levels which are mastered by the Product Lifecycle Management (PLM). But, PLM is underdeveloped in SMEs mainly because of the difficulties in implementing information systems. This paper aims to propose a modeling framework to facilitate the implementation of PLM systems in SMEs. Our approach proposes a generic model for the creation of processes and data models. These models are explained, based on the scope and framework of the modeling, in order to highlight the improvements provided

    Towards Understanding closed-loop PLM: The Role of Product Usage Data for Product Development enabled by intelligent Properties

    Get PDF
    Product lifecycle management (PLM) is a strategy of managing a company’s products all the way across their lifecycles. Empowered by new capabilities, intelligent products enable seamless information flow and thus enable closed-loop PLM. Hence, one phenomenon of particular interest is the appreciation of beginning of life activities through middle of life information. Grounded on empirical data from a multiple-case study in three distinct manufacturing industries, we explore this emergent role of product usage data for product development. In detail, we address rationales, opportunities, conditions, and obstacles. Findings indicate that (1) heterogeneous motives drive the exploitation, (2) a positive impact on every product development stage is perceivable, (3) some products and industry ecosystems are more suitable than others, and (4) technical, economic, and social obstacles challenge the exploitation. With the limitation of an interpretive, qualitative research design, our work represents a first step to understand the role of closed-loop PLM

    Space Station Freedom pressurized element interior design process

    Get PDF
    The process used to develop the on-orbit working and living environment of the Space Station Freedom has some very unique constraints and conditions to satisfy. The goal is to provide maximum efficiency and utilization of the available space, in on-orbit, zero G conditions that establishes a comfortable, productive, and safe working environment for the crew. The Space Station Freedom on-orbit living and working space can be divided into support for three major functions: (1) operations, maintenance, and management of the station; (2) conduct of experiments, both directly in the laboratories and remotely for experiments outside the pressurized environment; and (3) crew related functions for food preparation, housekeeping, storage, personal hygiene, health maintenance, zero G environment conditioning, and individual privacy, and rest. The process used to implement these functions, the major requirements driving the design, unique considerations and constraints that influence the design, and summaries of the analysis performed to establish the current configurations are described. Sketches and pictures showing the layout and internal arrangement of the Nodes, U.S. Laboratory and Habitation modules identify the current design relationships of the common and unique station housekeeping subsystems. The crew facilities, work stations, food preparation and eating areas (galley and wardroom), and exercise/health maintenance configurations, waste management and personal hygiene area configuration are shown. U.S. Laboratory experiment facilities and maintenance work areas planned to support the wide variety and mixtures of life science and materials processing payloads are described

    Problem solving methods as Lessons Learned System instrumentation into a PLM tool

    Get PDF
    Among the continuous improvement tools of the performance in enterprise, the experience feedback represents undoubtedly an effective lever of progress by offering important prospects for a progression in almost all the industrial sectors. However, several reserves to its use slow down the diffusion of its employment. We are interested in the installation of experience feedback system in a partner enterprise. In this paper, we propose an instrumentation of a Lessons Learned System (LLS) by problem solving methods (PSM) and its integration with a product lifecycle management (PLM). These proposals support an improvement of LLS performance and a facility of his application

    Internet of Things - Enabled visual analytics for linked maintenance and product lifecycle management

    Get PDF
    When closed loop product lifecycle management was first introduced, much effort focused on establishing ways to communicate data between different lifecycle phase activities. The concept of a smart product, able to communicate its own identity and status, had a key role to play to this end. Such a concept has further matured, benefiting from internet things-enabled product lifecycle management advancements. Product data exchanges can now be brought closer to the point of end use consumption, enabling users to become more proactive actors within the product lifecycle management process. This paper presents a conceptual approach and a pilot implementation of how this can be achieved by superimposing middle of life relevant product information to beginning of life product views, such as a 3D product CAD model. In this way, linked maintenance data and knowledge become visual features of a product design representation, facilitating a user’s understanding of middle-of life concepts, such as occurrence of failure modes. The proposed approach can be particularly useful when dealing with product data streams as a natural visual analytics add-in to closed loop product lifecycle management

    Aerospace applications of SINDA/FLUINT at the Johnson Space Center

    Get PDF
    SINDA/FLUINT has been found to be a versatile code for modeling aerospace systems involving single or two-phase fluid flow and all modes of heat transfer. Several applications of SINDA/FLUINT are described in this paper. SINDA/FLUINT is being used extensively to model the single phase water loops and the two-phase ammonia loops of the Space Station Freedom active thermal control system (ATCS). These models range from large integrated system models with multiple submodels to very detailed subsystem models. An integrated Space Station ATCS model has been created with ten submodels representing five water loops, three ammonia loops, a Freon loop and a thermal submodel representing the air loop. The model, which has approximately 800 FLUINT lumps and 300 thermal nodes, is used to determine the interaction between the multiple fluid loops which comprise the Space Station ATCS. Several detailed models of the flow-through radiator subsystem of the Space Station ATCS have been developed. One model, which has approximately 70 FLUINT lumps and 340 thermal nodes, provides a representation of the ATCS low temperature radiator array with two fluid loops connected only by conduction through the radiator face sheet. The detailed models are used to determine parameters such as radiator fluid return temperature, fin efficiency, flow distribution and total heat rejection for the baseline design as well as proposed alternate designs. SINDA/FLUINT has also been used as a design tool for several systems using pressurized gasses. One model examined the pressurization and depressurization of the Space Station airlock under a variety of operating conditions including convection with the side walls and internal cooling. Another model predicted the performance of a new generation of manned maneuvering units. This model included high pressure gas depressurization, internal heat transfer and supersonic thruster equations. The results of both models were used to size components, such as the heaters and gas bottles and also to point to areas where hardware testing was needed
    • 

    corecore