3,668 research outputs found

    Real-Time Work Zone Traffic Management via Unmanned Air Vehicles

    Get PDF
    Highway work zones are prone to traffic accidents when congestion and queues develop. Vehicle queues expand at a rate of 1 mile every 2 minutes. Back-of-queue, rear-end crashes are the most common work zone crash, endangering the safety of motorists, passengers, and construction workers. The dynamic nature of queuing in the proximity of highway work zones necessitates traffic management solutions that can monitor and intervene in real time. Fortunately, recent progress in sensor technology, embedded systems, and wireless communication coupled to lower costs are now enabling the development of real-time, automated, “intelligent” traffic management systems that address this problem. The goal of this project was to perform preliminary research and proof of concept development work for the use of UAS in realtime traffic monitoring of highway construction zones in order to create real-time alerts for motorists, construction workers, and first responders. The main tasks of the proposed system was to collect traffic data via the UAV camera, analyze that a UAV based highway construction zone monitoring systems would be capable of detecting congestion and back-of-queue information, and alerting motorists of stopped traffic conditions, delay times, and alternate route options. Experiments were conducted using UAS to monitor traffic and collect traffic videos for processing. Prototype software was created to analyze this data. The software was successful in detecting vehicle speed from zero mph to highway speeds. Review of available mobile traffic apps were conducted for future integration with advanced iterations of the UAV and software system that has been created by this research. This project has proven that UAS monitoring of highway construction zones and real-time alerts to motorists, construction crews, and first responders is possible in the near term and future research is needed to further development and implement the innovative UAS traffic monitoring system developed by this research

    Vehicle Detection and Tracking Techniques: A Concise Review

    Get PDF
    Vehicle detection and tracking applications play an important role for civilian and military applications such as in highway traffic surveillance control, management and urban traffic planning. Vehicle detection process on road are used for vehicle tracking, counts, average speed of each individual vehicle, traffic analysis and vehicle categorizing objectives and may be implemented under different environments changes. In this review, we present a concise overview of image processing methods and analysis tools which used in building these previous mentioned applications that involved developing traffic surveillance systems. More precisely and in contrast with other reviews, we classified the processing methods under three categories for more clarification to explain the traffic systems

    Comprehensive Survey and Analysis of Techniques, Advancements, and Challenges in Video-Based Traffic Surveillance Systems

    Get PDF
    The challenges inherent in video surveillance are compounded by a several factors, like dynamic lighting conditions, the coordination of object matching, diverse environmental scenarios, the tracking of heterogeneous objects, and coping with fluctuations in object poses, occlusions, and motion blur. This research endeavor aims to undertake a rigorous and in-depth analysis of deep learning- oriented models utilized for object identification and tracking. Emphasizing the development of effective model design methodologies, this study intends to furnish a exhaustive and in-depth analysis of object tracking and identification models within the specific domain of video surveillance

    Pedestrian Detection and Tracking in Urban Context Using a Mono-camera

    Get PDF
    Jalakäijate tuvastus ja jälgimine on üks tähtsamaid aspekte edasijõudnud sõitja abisüsteemides. Need süsteemid aitavad vältida ohtlikke olukordi, juhendades sõitjaid ja hoiatades ettetulevate riskide eest. Jalakäijate tuvastuse ja jälgimise põhiideed on tuvastada jalakäijad siis, kui nad on turvalises tsoonis ja ennustada nende asukohta ja suunda. Selle lõputöö eesmärk on uurida võimalikke meetodeid ja arendada nende põhjal hea algoritm jalakäijate tuvastuseks ja jälgimiseks.Selles lõputöös arendatud lahendus keskendub jalakäija täpsele tuvastamisele ja jälgimisele. Süsteemi täpsuse hindamiseks on saadud tulemusi võrreldud olemasolevate lahendustega.Pedestrian detection and tracking are one of the important aspects in Advanced Driver Assistance Systems. These systems help to avoid dangerous situations, by guiding drivers and warning them about the upcoming risks. The main ideas of pedestrian detection and tracking are to detect pedestrians, while they are in the secure zone, and predict their position and direction.The goal of this thesis is to examine possible methods and based on these, to develop a good pedestrian detection and tracking algorithm. The solution developed in this thesis, focuses on accurately detecting and tracking a pedestrian. In order to estimate the accuracy of the system, obtained results will be compared to the existing solutions

    Video analytics for security systems

    Get PDF
    This study has been conducted to develop robust event detection and object tracking algorithms that can be implemented in real time video surveillance applications. The aim of the research has been to produce an automated video surveillance system that is able to detect and report potential security risks with minimum human intervention. Since the algorithms are designed to be implemented in real-life scenarios, they must be able to cope with strong illumination changes and occlusions. The thesis is divided into two major sections. The first section deals with event detection and edge based tracking while the second section describes colour measurement methods developed to track objects in crowded environments. The event detection methods presented in the thesis mainly focus on detection and tracking of objects that become stationary in the scene. Objects such as baggage left in public places or vehicles parked illegally can cause a serious security threat. A new pixel based classification technique has been developed to detect objects of this type in cluttered scenes. Once detected, edge based object descriptors are obtained and stored as templates for tracking purposes. The consistency of these descriptors is examined using an adaptive edge orientation based technique. Objects are tracked and alarm events are generated if the objects are found to be stationary in the scene after a certain period of time. To evaluate the full capabilities of the pixel based classification and adaptive edge orientation based tracking methods, the model is tested using several hours of real-life video surveillance scenarios recorded at different locations and time of day from our own and publically available databases (i-LIDS, PETS, MIT, ViSOR). The performance results demonstrate that the combination of pixel based classification and adaptive edge orientation based tracking gave over 95% success rate. The results obtained also yield better detection and tracking results when compared with the other available state of the art methods. In the second part of the thesis, colour based techniques are used to track objects in crowded video sequences in circumstances of severe occlusion. A novel Adaptive Sample Count Particle Filter (ASCPF) technique is presented that improves the performance of the standard Sample Importance Resampling Particle Filter by up to 80% in terms of computational cost. An appropriate particle range is obtained for each object and the concept of adaptive samples is introduced to keep the computational cost down. The objective is to keep the number of particles to a minimum and only to increase them up to the maximum, as and when required. Variable standard deviation values for state vector elements have been exploited to cope with heavy occlusion. The technique has been tested on different video surveillance scenarios with variable object motion, strong occlusion and change in object scale. Experimental results show that the proposed method not only tracks the object with comparable accuracy to existing particle filter techniques but is up to five times faster. Tracking objects in a multi camera environment is discussed in the final part of the thesis. The ASCPF technique is deployed within a multi-camera environment to track objects across different camera views. Such environments can pose difficult challenges such as changes in object scale and colour features as the objects move from one camera view to another. Variable standard deviation values of the ASCPF have been utilized in order to cope with sudden colour and scale changes. As the object moves from one scene to another, the number of particles, together with the spread value, is increased to a maximum to reduce any effects of scale and colour change. Promising results are obtained when the ASCPF technique is tested on live feeds from four different camera views. It was found that not only did the ASCPF method result in the successful tracking of the moving object across different views but also maintained the real time frame rate due to its reduced computational cost thus indicating that the method is a potential practical solution for multi camera tracking applications
    corecore