421 research outputs found

    Automated Mapping of UML Activity Diagrams to Formal Specifications for Supporting Containment Checking

    Full text link
    Business analysts and domain experts are often sketching the behaviors of a software system using high-level models that are technology- and platform-independent. The developers will refine and enrich these high-level models with technical details. As a consequence, the refined models can deviate from the original models over time, especially when the two kinds of models evolve independently. In this context, we focus on behavior models; that is, we aim to ensure that the refined, low-level behavior models conform to the corresponding high-level behavior models. Based on existing formal verification techniques, we propose containment checking as a means to assess whether the system's behaviors described by the low-level models satisfy what has been specified in the high-level counterparts. One of the major obstacles is how to lessen the burden of creating formal specifications of the behavior models as well as consistency constraints, which is a tedious and error-prone task when done manually. Our approach presented in this paper aims at alleviating the aforementioned challenges by considering the behavior models as verification inputs and devising automated mappings of behavior models onto formal properties and descriptions that can be directly used by model checkers. We discuss various challenges in our approach and show the applicability of our approach in illustrative scenarios.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    Towards an ontology for process monitoring and mining

    Get PDF
    Business Process Analysis (BPA) aims at monitoring, diagnosing, simulating and mining enacted processes in order to support the analysis and enhancement of process models. An effective BPA solution must provide the means for analysing existing e-businesses at three levels of abstraction: the Business Level, the Process Level and the IT Level. BPA requires semantic information that spans these layers of abstraction and which should be easily retrieved from audit trails. To cater for this, we describe the Process Mining Ontology and the Events Ontology which aim to support the analysis of enacted processes at different levels of abstraction spanning from fine grain technical details to coarse grain aspects at the Business Level

    Communications semantics for WSBPEL Processes

    Get PDF
    ISBN : 978-0-7695-3310-0International audienceWSBPEL opens up the possibility of applying a range of formal techniques to the verification of Web service behaviors from two points of view: constraints between activities within the same process and dependencies between activities of different processes. In a previous work, we have described an approach for the verification of Web service compositions defined by a set of BPEL processes. The key aspect of such a verification task is the model adopted for representing the communications among the services participating to the composition. In this paper, we propose to extend this approach to handle dependencies between activities of different process orchestrations through message exchanges. Our aim is to enable supporting models of service choreography with multiple interacting Web services compositions, from the perspective of a collaborative distributed composition development environment. The process of behavior analysis moves from a single local process to that of modelling and analyzing the behavior of multiple processes across composition domains

    A Two-tier Data-centric Framework for Flexible Business Process Management

    Get PDF
    Business process management provides a means of coordinating interactions between workers and organizations in a structured way. However, the dynamic nature of the modern business environment requires these processes are subject to an increasingly wide range of variations. Therefore, flexible approaches are needed to deal with these variations in order to maintain viable business. In this paper, we propose a two-tier data-centric framework to achieve process flexibility. Our approach is based on Business Entity, a new process modeling paradigm widely recognized in recent years. We design a process design business entity (PD entity) to include business process definitions as a part of its information, and process execution business entities (PE entities) provide the context for defining the behavior of activities in the processes. The business processes, as the PD entity data, can be modified on-the-fly and evolve naturally as the PD entity progresses through its lifecycle. We illustrate this framework with an example from the travel service industry. It shows that this framework is able to improve process flexibility, empower business users with capability of making timely process changes, and reduces the burden of managing process evolution

    BPM News - Folge 3

    Get PDF
    Die BPM-Kolumne des EMISA-Forums berichtet über aktuelle Themen, Projekte und Veranstaltungen aus dem BPM-Umfeld. Schwerpunkt der vorliegenden Kolumne bildet das Thema Standardisierung von Prozessbeschreibungssprachen und -notationen im Allgemeinen und BPEL4WS (Business Process Execution Language for Web Services) im Speziellen. Hierzu liefert Jan Mendling von der Wirtschaftsuniversität Wien in aktuelles Schlagwort. Des weiteren erhalten Leser eine Zusammenfassung zweier im ersten Halbjahr 2006 veranstalteten Workshops zu den Themen „Flexibilität prozessorientierter Informationssysteme“ und „Kollaborative Prozesse“ sowie einen BPM Veranstaltungskalender für die 2. Jahreshälfte 2006

    A Semantical Framework To Engineering WSBPEL Processes

    Get PDF
    International audienceWeb services promise the interoperability of various applications running on heterogeneous platforms over the Internet, and are gaining more and more attention. Web service composition refers to the process of combining Web services to provide value-added services, which has received much interest in supporting enterprize application integration. Industry standards for Web Service composition, such as WSBPEL, provide the notation and additional control mechanisms for the execution of business processes in Web service collaborations. However, these standards do not provide support for checking interesting properties related to Web Service and process behavior. In an attempt to fill this gap, we describe a formalization of WSBPEL business processes, that adds communications semantics to the specifications of interacting Web services, and uses a formal logic to model their dynamic behavior, which enables their formal analysis and the inference of relevant properties of the systems being built

    A Framework for Design-Time Testing of Service-Based Applications at BPEL Level

    Get PDF
    Software applications created on top of the service-oriented architecture (SOA) are increasingly popular but testing them remains a challenge. In this paper a framework named TASSA for testing the functional and non-functional behaviour of service-based applications is presented. The paper focuses on the concept of design time testing, the corresponding testing approach and architectural integration of the consisting TASSA tools. The individual TASSA tools with sample validation scenarios were already presented with a general view of their relation. This paper’s contribution is the structured testing approach, based on the integral use of the tools and their architectural integration. The framework is based on SOA principles and is composable depending on user requirements.The work reported in this paper was supported by a research project funded by the National Scientific Fund, Bulgarian Ministry of Education, Youth and Science, via agreement no. DOO2-182

    Web Services Compositions Modelling and Choreographies Analysis

    Get PDF
    International audienceIn (Rouached, Godart and al. 2006; Rouached, Godart 2007), we have described the semantics of WSBPEL by way of mapping each of the WSBPEL (Arkin, Askary and al. 2004) constructs to the EC algebra and building a model of the process behaviour. With these mapping rules, we have described a modelling approach of a process defined for a single Web service composition. However, this modelling is limited to a local view and can only be used to model the behaviour of a single process. A series of compositions in Web service choreography need specific modelling activities that are not explicitly derived from an implementation. An elaboration of modelling is then required to represent the behaviour of interacting compositions across partnered processes. This elaboration provides a representation that enables us to perform analysis of service interaction for behaviour properties. The ability to perform verification and validation between execution and design, and within the process compositions themselves, is a key requirement of the Web services architecture specification. In this paper, we further the semantic mapping to include Web service composition interactions through modelling Web service conversations and their choreography. We describe this elaboration of models to support a view of interacting Web service compositions extending the mapping from WSBPEL to EC, and including Web service interfaces (WSDL) for use in modelling between services. The verification and validation techniques are also exposed. An automated induction-based theorem prover is used as verification back-end

    BProVe: A formal verification framework for business process models

    Get PDF
    Business Process Modelling has acquired increasing relevance in software development. Available notations, such as BPMN, permit to describe activities of complex organisations. On the one hand, this shortens the communication gap between domain experts and IT specialists. On the other hand, this permits to clarify the characteristics of software systems introduced to provide automatic support for such activities. Nevertheless, the lack of formal semantics hinders the automatic verification of relevant properties. This paper presents a novel verification framework for BPMN 2.0, called BProVe. It is based on an operational semantics, implemented using MAUDE, devised to make the verification general and effective. A complete tool chain, based on the Eclipse modelling environment, allows for rigorous modelling and analysis of Business Processes. The approach has been validated using more than one thousand models available on a publicly accessible repository. Besides showing the performance of BProVe, this validation demonstrates its practical benefits in identifying correctness issues in real models
    corecore