
HAL Id: inria-00345178
https://hal.inria.fr/inria-00345178

Submitted on 8 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Communications semantics for WSBPEL Processes
Walid Fdhila, Mohsen Rouached, Claude Godart

To cite this version:
Walid Fdhila, Mohsen Rouached, Claude Godart. Communications semantics for WSBPEL Pro-
cesses. 2008 IEEE International Conference on Web Services, Sep 2008, Beijing, China. pp.185-194,
�10.1109/ICWS.2008.55�. �inria-00345178�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50205974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00345178
https://hal.archives-ouvertes.fr

Communications semantics for WSBPEL Processes

Walid Fdhila and Mohsen Rouached and Claude Godart

LORIA-INRIA-UMR 7503

BP 239, F-54506 Vandœuvre-les-Nancy Cedex, France

{fdhilawa,rouached,godart}@loria.fr

Abstract

WSBPEL [2] opens up the possibility of applying a
range of formal techniques to the verification of Web
service behaviors from two points of view: constraints
between activities within the same process and depen-
dencies between activities of different processes. In
a previous work, we have described an approach for
the verification of Web service compositions defined by
a set of BPEL processes. The key aspect of such a
verification task is the model adopted for representing
the communications among the services participating
to the composition. In this paper, we propose to extend
this approach to handle dependencies between activi-
ties of different process orchestrations through message
exchanges. Our aim is to enable supporting models of
service choreography with multiple interacting Web ser-
vices compositions, from the perspective of a collabora-
tive distributed composition development environment.
The process of behavior analysis moves from a single lo-
cal process to that of modelling and analyzing the behav-
ior of multiple processes across composition domains.

1 Introduction

The ability to compose complex Web services from a
multitude of available component services is one of the
most important problems in service-oriented comput-
ing paradigm. Web service composition is the ability to
aggregate multiple services into a single composite ser-
vice that would provide a certain functionality, which
otherwise cannot be provided by a single service.

While the technology for developing basic services
and interconnecting them on a point-to-point basis has
attained a certain level of maturity, there remain open
challenges when it comes to engineering services that
engage in complex interactions that go beyond simple
sequences of requests and responses or involve large

numbers of participants.

In practice, there are two different (and competing)
notions of modeling Web service compositions: orches-
tration and choreography. Orchestration describes how
multiple services can interact by exchanging messages
including the business logic and execution order of the
interactions from the perspective of a single endpoint
(i.e., the orchestrator). It refers to an executable pro-
cess that may result in a persistent, multi step interac-
tion model where the interactions are always controlled
from the point of view of a single entity involved in the
process. Choreography, on the other hand, provides a
global view of message exchanges and interactions that
occur between multiple process endpoints, rather than
a single process that is executed by a party. Thus,
choreography is more akin to a peer-to-peer (P2P) ar-
chitecture and offers a means by which the rules of
participation for collaboration are clearly defined and
agreed upon. Even though there exists competing stan-
dards for both the models of composition, namely WS-
BPEL [16] for orchestration and WS-CDL [3] for chore-
ography, it is widely accepted that both orchestration
and choreography can (and should) co-exist within one
single environment.

Concerning WS-CDL, as discussed in [3], there are
several places where its specification is not yet fully
developed and a number of known issues remain open.
Some issues of a more fundamental or practical nature
are difficult to address and are likely to require a signif-
icant review of the language’s underlying meta-model
and implied techniques. These issues primarily stem
from three factors: (i)lack of separation between meta-
model and syntax,(ii) lack of direct support for certain
categories of use cases and ,(iii)lack of comprehensive
formal grounding (see [3] for details).

On the contrary, BPEL is quickly emerging as the
language of choice for Web service composition. It
opens up the possibility of applying a range of for-
mal techniques to the verification of the behavior of
Web services (see, e.g.[11, 13, 20]). For instance, it

1

is possible to check the internal business process of a
participant against the external business protocol that
the participant is committed to provide; or, it is pos-
sible to verify whether the composition of two or more
processes satisfies general properties (such as dead-
lock freedom) or application-specific constraints (e.g.,
temporal sequences, limitations on resources). These
kinds of verifications are particularly relevant in the
distributed and highly dynamic world of Web services,
where each partner can autonomously redefine business
processes and interaction protocols.

However, one common problem of the different tech-
niques adopted is related to the model used for repre-
senting the communications among the Web services.
Indeed, the actual mechanism implemented in the ex-
isting BPEL execution engines is both very complex
and implementation dependent. More precisely, BPEL
processes exchange messages in an asynchronous way;
incoming messages go through different layers of soft-
ware, and hence through multiple queues, before they
are actually consumed in the BPEL activity; and over-
passes are possible among the exchanged messages. On
the other hand, the semantics for how to translate the
connectivity and communication between activities of
the partner processes rather than from a single process
focus are not taken into account.

To address these shortcomings, we propose in this
paper a semantic framework that provides a founda-
tion for addressing the above limitations by supporting
models of service choreography with multiple interact-
ing Web services compositions, from the perspective
of a collaborative distributed composition development
environment. The process of behaviour analysis moves
from a single local process to that of modelling and an-
alyzing the behavior of multiple processes across com-
position domains. We show also how to translate the
connectivity and communication between activities of
the partner processes rather than from a single process
focus. These may also contain communication actions
or dependencies between communication actions that
do not appear in any of the service’s behavioral in-
terface(s). This is because behavioral interfaces may
be made available to external parties, and, thus, they
should only show the information that actually needs
to be visible to these parties.

The remainder of this paper is structured as follows.
Section 2 describes the background and the issues in-
volved in Web service compositions verifications. In
Section 3, we detail our approach and explain the dif-
ferent steps for getting our communication model. The
implementation of the approach is discussed in Section
4. Finally, Section 5 summarizes the ideas explained in
the paper and outlines some future directions.

2 Background

Standards for service composition cover three dif-
ferent, although overlapping, viewpoints: Choreogra-
phy, Behavioral interface (also called abstract process
in BPEL), and Orchestration (also called executable
process in BPEL).

While a choreography model describes a collabora-
tion between a collection of services in order to achieve
a common goal, an orchestration model describes both
the communication actions and the internal actions in
which a service engages. Internal actions include data
transformations and invocations to internal software
modules (e.g., legacy applications that are not exposed
as services). An orchestration may also contain com-
munication actions or dependencies between communi-
cation actions that do not appear in any of the service’s
behavioral interface(s). This is because behavioral in-
terfaces may be made available to external parties, and,
thus, they should only show the information that ac-
tually needs to be visible to these parties.

With respect to Web service analysis approaches,
in particular BPEL processes, several works were de-
scribed to capture the behavior of BPEL [1] in some
formal way. Some advocate the use of finite state ma-
chines [10], others process algebras [9], and yet others
abstract state machines [8] or Petri nets [19, 18, 23].
But they mainly focus on introducing a semantic dis-
covery service and facilitating semantic translations.
Other attempts to formalize BPEL specification and
a detailed comparison between them can be found in
[25, 24]. [24] is a tutorial that provides an overview of
the different models of BPEL that have been proposed.
Furthermore, the authors discuss the verification tech-
niques for BPEL that have been put forward and the
verification tools for BPEL that have been developed.

In terms of choreography and Web service conver-
sations, work on asynchronous Web service communi-
cation has been described in [13, 12], with an exam-
ple focus on the BPEL4WS specification reported in
[13]. A formal specification framework is described
to analyze the conversations proposed by the asyn-
chronous communication channels utilized on the Inter-
net. The technique proposed appears more useful for
modelling general Web service communications, rather
than that of compositional specifics. Both the work on
asynchronous and BPEL4WS interaction modelling is
achieved through the use of Guarded Finite State Au-
tomata (GFSA) which enables data dependencies to
be modeled alongside process transitions. In [6] the
authors describe an approach to formalizing conversa-
tions, by way of mapping the WSCI standard to CCS
for Web service choreography descriptions. The tech-

nique is similar to that of formalizing compositions by
way of mapping each of the actions and data parame-
ters between two or more partnered services in chore-
ography. The conversation is traced by modelling the
Web service invocations with that of the receive and re-
ply actions of the partnered service. The authors call
for a common view of representing both composition
and choreography models, such that fluid design and
maintenance of individual specifications are not detri-
mental to the development effort.

[14] describes an approach for the verification of Web
service compositions defined by a set of BPEL4WS pro-
cesses. The key aspect of such a verification task is the
model adopted for representing the communications
among the services participating to the composition.
Indeed, these communications are asynchronous and
buffered in the existing execution frameworks, while
most verification approaches adopt a synchronous com-
munication model for efficiency reasons.

Berardi and al. [5, 4] also provide a formal frame-
work where services are represented using transition
systems. The approach assumes that the services ex-
change messages according to a pre-defined communi-
cation topology (referred to as the linkage structure),
which is expressed as a set of channels.

Manolescu and al. [17] present a high-level language
and methodology for designing and deploying Web ap-
plications using Web services. In particular, the au-
thors extend WebML [7] to support message-exchange
patterns present in WSDL and use the WebML hyper-
text model for describing Web interactions and defining
specific concepts in the model to represent Web service
calls. Consequently, the Web service invocation is cap-
tured by a visual language representing the relation-
ships between the invocations and the input/output
messages.

A common pattern of the above attempts is that the
orchestration and the choreography are not usually ex-
pressed within one single environment and therefore
the verification techniques must be modified before us-
ing them. Instead, in our research work, we aim to
provide a uniform framework that is capable of address-
ing this shortcoming by providing a guide on how to
translate the semantics of the BPEL specification to
EC and map implementation abstractions which pre-
serve the interaction behaviour between services, yet
also disposing of process characteristics which are not
required in the analysis. Then, we elaborated these
models to analyze the conversations of compositions
across choreography scenarios, providing both interface
and behavioral compatibility verification processes.

3 Communication semantics for WS-

BPEL processes

To illustrate our ideas, we refer to a running exam-
ple implemented as a BPEL process realizing a Car
Rental Agency service (a complete description can be
found in [21]). It interacts with a Car Broker Service
(CRS), which controls the operations of the branch;
with a User Interaction Service (UIS), through which
customers can make car rental requests; with a Car In-
formation Service (CIS), which maintains a database of
cars availability and allocate cars to customers; with a
Car Park Sensor Service, which exposes as a Web ser-
vice the sensor that senses cars as they are driven in
or out of the car park of the branch. Each of the com-
ponent services can also be implemented as a BPEL
process since it needs some other processes to ensure
its role in the collaboration.

3.1 Event-driven specification

Given the fact that we consider communications ac-
tions where ordering and timing are relevant and we
adopt an event driven reasoning, the Event Calculus
(EC) [15] seems to be a solid basis to start from. An-
other key element of this choice is that orchestration
and choreography should co-exist within one single en-
vironment, and in our case the orchestration verifica-
tion framework is based on EC logic.

EC is a temporal formalism based on a first order
logic, that can be used to specify the events that ap-
pear within a system and the effect (or the fluents)
of these events. It includes an explicit time struc-
ture that dates the system changes caused by the oc-
currence of the events. EC includes the predicates
Happens, Initiates, Terminates and HoldsAt, as well
as some auxiliary predicates defined in terms of these.
Happens(a, t) indicates that event (or action) a ac-
tually occurs at time-point t. Initiates(a, f, t) (resp.
Terminates(a, f, t)) means that if event a were to oc-
cur at t it would cause fluent f to be true (resp.
false) immediately afterwards. HoldsAt(f, t) indi-
cates that fluent f is true at t. The auxiliary predicate
Clipped(t1, f, t2) expresses whether a fluent f was ter-
minated during a time interval [t1, t2].

To formally specify and reason about the interac-
tions between a set of BPEL processes, we use four
different types of events showed in Figure 1.

1. invoke input : The invocation of an opera-
tion by the composition process of the sys-
tem in one of its partner services. The term
invoke ic(PartnerService,Op(oId, inV ar)) rep-
resents the invocation event. In this term,

Type Event
invoke input Happens(invoke ic(PartnerService,Op(oId,inVar)),t)

invoke output Happens(invoke ir(PartnerService,Op(oId)),t)

receive Happens(invoke rc(PartnerService,Op(oId)),t)

reply Happens(reply(PartnerService,Op(oId,outVar)),t)

Figure 1. Events expressed in Event Calculus

Op is the name of the invoked operation,
PartnerService is the name of the service that
provides Op, oId is a variable whose value de-
termines the exact instance of the invocation of
Op within a specific instance of the execution of
the composition process, and inV ar is a variable
whose value is the value of the input parameter of
Op at the time of its invocation.

2. invoke output : The return from the execu-
tion of an operation invoked by the com-
position process in a partner service. The
term invoke ir(PartnerService,Op(oId)) in
this predicate represents the return event.
PartnerService, Op and oId in this term
are as defined in (1). In cases where Op

has an output variable outV ar, the value
of this variable at the return of the oper-
ation is represented by the predicate: Ini-

tiates(invoke ir(PartnerService,Op(oId)),
equalTo(outVar1, outVar), t). This predicate
expresses the initialization of a fluent variable
(outV ar1) with the value of outV ar. The fluent
equalTo(V arName, val) signifies that value of
V arName is equal to val.

3. receive: The invocation of an operation in the
composition process by a partner service. The
term invoke rc(PartnerService, Op(oId)) in this
predicate represents the invocation event. Op and
oId are as defined in (1) and PartnerService is
the name of the service that invokes the opera-
tion. In cases where Op has an input variable
inV ar, the value of this variable at the time of
its invocation is represented by the predicate
Initiates(invoke rc(PartnerService,Op(oId)),
equalTo(inVar1, inVar), t). This predicate
expresses the initialization of a fluent variable
inV ar1 with the value of inV ar.

4. reply : The reply following the execution of an
operation that was invoked by a partner ser-
vice in the composition process. The term
reply(PartnerService, Op(oId, outV ar)) in this

predicate represents the reply event. In this term,
Op and oId are as defined in (1), PartnerService

is the name of the service that invoked Op, and
outV ar is a variable whose value is the value of
the output parameter of the operation at the time
of the reply.

3.2 The approach

As mentioned so far, our objectif is to provide a
model of service choreography with multiple interact-
ing Web services compositions, from the perspective
of a collaborative distributed composition development
environment. The process of behaviour analysis moves
from a single local process to that of modelling and
analyzing the behaviour of multiple processes across
composition domains. We look also for translating the
connectivity and communication between activities of
the partner processes rather than from a single process
focus (see Figure 2). These may also contain communi-
cation actions or dependencies between communication
actions that do not appear in any of the service’s be-
havioral interface(s). In this section, we discuss how to
realize this objective.

Figure 2. Web Service Compositions Interac-
tions

To start, we require a process to analyze which ac-
tivities are partnered in the composition. For example,
invoke from the UIS service (a rental request) will be
received by the CRS process (receive a rental request).
Equally, the CRS invoke activity, to check the avail-
ability of cars by contacting CIS, will be aligned with
receive in the CRS process. In WSBPEL, the commu-
nication is based upon a protocol of behavior for a local
service. However, the partner communication can con-
cisely be modeled using the synchronous event passing
model, described in [16]. The Sender-Receiver exam-
ple discussed uses Channels to facilitate message/event
passing between such a sender and receiver model. The
representation of a channel in WSBPEL is known as a

port. The significant element of this discussion used
in our process is that of synchronization of the invok-
ing and receiving events within compositions between
ports and whether this has been constructed concur-
rently (flow construct in WSBPEL) or as a sequence
(sequence construct in WSBPEL) of activities.

In the following, we seek to further our modelling of
WSBPEL interactions through two viewpoints. First,
we examine the interactions within the choreography
layer of Web service compositions collaborating in a
global goal. Secondly, through further behaviour anal-
ysis, we model the interaction sequences built to sup-
port multiple-partner conversations across enterprise
domains and with a view of wider goals.

Our approach relies on four steps: (1) identifying
services conversations, (2) identifying partners involved
in the composition and their respective roles, (3) link-
ing composition interactions by revealing the invoca-
tion style, points at which interaction occurs and link-
ing between partners using port connectors. We in-
troduce, also, the interaction modelling algorithm, we
proposed, in details and (4) building interaction models
using our formalism.

3.3 Service conversations

Events exchange is a basic concept of Web ser-
vice composition interactions. In this sense, Web ser-
vice modelling involves interactions and their interde-
pendencies description from structural and behavioral
point of view. In this step, we mainly identify conver-
sations between two or more participants. Note that a
service may be engaged simultaneously in several con-
versations with different partners. A conversation de-
fines how interactions can start and end depending on
the goal of conversation. It specifies also the order in
which several scenarios could occur.

To model these conversations in the context of sev-
eral Web service compositions, we perform an analysis
process on all the implementation processes and use
an algorithm as part of this analysis to semantically
check and link partner process interactions. The al-
gorithm takes as inputs the partner service interfaces
(WSDL documents) and the implementation models
(BPEL documents). The output of this phase is a list
of interaction activities.

3.4 Service partners and roles

An important requirement for realistic modelling of
business processes is the ability to model the required
relationship with a partner process. WSDL already
describes the functionality of a service provided by a

partner, at both the abstract and concrete levels. The
relationship of a business process to a partner is typi-
cally peer-to-peer, requiring a two-way dependency at
the service level. In other words, a partner represents
both a consumer of a service provided by the business
process and a provider of a service to the business pro-
cess. In this sense, a partner may be considered to
have one or many roles depending on what behaviour
the partner’s service provides. The role indicator is
used primarily to distinguish what the business pro-
cess is referencing as part of the collaborative business
process.

3.5 Linking composition interactions

To model interacting Web service compositions
there is clearly a need to elaborate our analysis of
implementations by linking compositional interactions
based upon: (i) activities within the process (identi-
fying invocation style (rendez vous or request only),
identifying and recording the points at which interac-
tion occurs), (ii) the abstract interface (linking between
the private process activities and the public communi-
cation interface declared in the abstract WSDL service
description).

To model the semantics of linking interactions be-
tween processes requires a mapping between activities
in each of the processes translated and building an
event port connector for each of the interaction activ-
ities linking invoke (input) with receives, and replies
(output) with the returned message to an invoke.

Before introducing our choreography modelling al-
gorithm, we define some formal notations useful for its
understanding.

3.5.1 Algorithm

Definitions

1- Let O be the set of all operations provided by a
Web service in the choreography.

2- Let Cw be the BPEL process of the partner W .

3- A BPEL process Cwi is a quadruple (In, P, A,Wi)
where

– In ⊂ O represents the WSDL process inter-
face: In = {wi.on | O ≤ n ≤ nwi}

– Wi the set of partners defined in the process
Cwi

– P ⊂ O the set of the operations of part-
ner wj of wi (j ∈ I), such as P =
{wj .o | wj 6= wi and ∃j ∈ I, wj .o ∈ Inj}

– A is the set of the invocation activities such
as ∀ a ∈ A:

∗ a.o represents the invoked operation

∗ a.p represents the invoked partner

Algorithm The physical linking of partnerlinks,
partners and process models is undertaken as follows.
For each invocation in a process, a messaging port is
created. WSBPEL defines communication in a syn-
chronous messaging model. WSBPEL process instance
support in the specification specifies that in order to
keep consistency between process activities, a syn-
chronous request mechanism must be governed. The
synchronous model can be formed by the following pro-
cess.

Algorithm 1: Interactions modelling algorithm

for each Composition Cwi do
for each a ∈ Awi do

P
−

Local ← a.p

P
−

link ← P
−

local.partnerLink

PLT ← P
−

link.partnerLinkType

Port
−

Type ← PLT.portType

for each Inwj (wj ∈ Wi) do
if Inwj .porttype = Port

−
Type then

actual
−

partner ← wj

Lookup wj .o ∈ Pwj such as
wj .o = a.o

if a.o.output is in (rendez-vous style)
then

Add invokeOutput action to activity
model
Build reply-invokeOutput

connector
Build invoke-receive connector

For every composition process selected for modelling
we extract all the interaction activities in this process.
Interaction activities are service operation invocations
(requests), receiving operation requests and replying
to operation requests. In addition to an invocation re-
quest, we also add an invocation reply to synchronize
the reply from a partner process with that of the re-
questing client process. The list is then analyzed for
invocation requests, and for each one found a part-
ner/port lookup is undertaken to gather the actual
partner that is specified in a partnerlink declaration.
To achieve this, a partner list is used and the partner
referenced in the invocation request is linked back to
a partnerlink reference. The partnerlink specifies the
porttype to link operation and partner with an actual

interface definition. To complete the partner match,
all interface definitions used in composition analysis
are searched and matched on porttype and operation
of requesting client process. This concludes the part-
ner match. A port connector bridge is then built to
support either a simple request invocation (with no re-
ply expected) or in “rendez-vous” style, building both
invoke/receive and reply-invoke output models. This
supports the model mapping. The sequence is then
repeated for all other invocations in the selected com-
position process, and then looped again for any other
composition processes to analyze. We therefore spec-
ify an algorithm that will enable mechanical linking
between activities, partners and process compositions.
The algorithm supports a mechanical implementation
of linking composition processes together based upon
their interaction behaviour. Two build phases are re-
quired as part of the algorithm, being that of building a
reply-invoke output port and invoke-receive connector
between partnered processes.

In summary, the algorithm described provides a port
connector based implementation of the communication
between two partner processes. Where multiple part-
ners communication is undertaken in a composition,
a port connector is built between each instance of a
message (and optionally a reply if used in rendez-vous
interaction style). In the following, we explain how to
construct our port connector model.

3.6 Building interaction models

The activity of building port connectors for our inte-
gration mapping is based on the basic concept of event
passing in the formation of Web service composition
communication. The essence of this work is that events
are passed through channels. A channel connects two
and only two processes, in which a single process can
receive from a channel. The term channel is used to
symbolize that an one-to-one channel is used in pro-
cess synchronization. A connector is the implementa-
tion between port and channel, in that a sender port is
connected to a sender-receiver channel.

3.6.1 Event Invocations Connectors

To build connected composition interactions, port con-
nector channels are used for each of the invocation
styles between two or more partnered compositions.
The algorithm is used from the viewpoint of a pro-
cess composition at the “center of focus”, that is, the
one in which initial process analysis is being consid-
ered. The interface of subsequent partner interactions
is used in the algorithm to obtain a link between two

Figure 3. Channels and Interaction Activities
of Web Service Compositions

partners and an actual operation. For example in Fig-
ure 3, two WSBPEL processes interact using both a re-
quest only invocation (Channel A) and a Rendez-vous
style (Channel A and B). Our model of interactions us-
ing channels takes into consideration both synchronous
and asynchronous interactions between partners. The
model produced from analysis of the compositions is
from the viewpoint of the composition performing as
part of a role in choreography. This makes the model
providing an abstract view of interactions for the pur-
pose of linking invocations and not on the actual order
of messages received by the process host architecture
(synchronous and asynchronous messaging models for
Web services can be referred in [13]).

Request only invocation (Channel A) Web ser-
vice compositions specified with the invoke construct
and only an input container attribute declare an inter-
action on a request only basis (there is no immediate
reply expected). More generally this requirement is
for a reliable message invocation without any output
response from the service host (other than status of re-
ceiving the request). The model for this is illustrated
in Figure 4.

Rendezvous style invocation (Channels A and
B) “Rendezvous” (Request and Reply) invocations
are specified in WSBPEL with the invoke construct,
with both input and output container attributes. To
model these types of interactions, we use a generic
port model for each process port. A synchronous
event model in Web services compositions (such as
WSBPEL) requires an additional activity of an “in-
put output” to link a reply in a partnered process to
that of the caller receiving the output of the invoke,
however, this is necessary only if the invocation style
is that of rendez-vous. The event synchronization for

WS Interac-
tion

Port Ac-
tion

BPEL Actions (Example)

Invoke (client) Invoke input invoke client CRS CarRequest
Receive(Partner) Receive Receive client CRS CarRequest
Reply(Partner to
client)

Reply
Invoke output

reply CRS client CarRequest
output CRS client CarRequest

Table 1. Mapping Process Activities to Port
Connectors

this port model is shown in Figure 5.

Coming back to the CRS example introduced so far,
Figure 6 shows an interaction scenario to illustrate how
the previous interactions can be established.

Figure 6. Event Invocation Connectors

3.6.2 Mapping Process Activities to Port Con-
nectors

The next step in the port connector modelling process
is to map the activities of the WSBPEL process to
the port connector activities. This is achieved using
the semantics of WSBPEL for the interaction activi-
ties discussed earlier and replacing the port connector
activities appropriately.

The invoke activity in BPEL4WS is mapped from
the client process to the invoke input action of the port
connector - this represents the initial step of a request
between Web service partners.

The associated receiving action of the WSBPEL
partner process is mapped to the receive activity in
the port connector. The reply from the partner pro-
cess to the client process is mapped to the reply in the
partnered process. Both receive and reply activities
in the WSBPEL are discovered as part of the interface
analysis described before. Table 1 lists the mapping
explained here.

∀(t1:time)Happens(invoke
−

ic(PartnerService, Operation(oId, inV ar)), t1)=⇒
(∃t2)Happens(invoke

−
rc(PartnerService, Operation(oId)), t2) ∧

Initiates (invoke
−

rc(PartnerService, Operation(oId)), equalTo(inV ar1, inV ar), t2)) ∧ (t1 < t2).
∀(t2:time)Happens (invoke

−
rc(PartnerService, Operation(oId)), t2)) ∧

Initiates(invoke
−

rc(PartnerService, Operation(oId)), equalTo(inV ar1, inV ar), t2) =⇒
(∃t1)Happens(invoke

−
ic(PartnerService, Operation(oId, inV ar)), t1) ∧ (t1 < t2).

Figure 4. Request only invocation

∀(t1:time)Happens(invoke
−

ic(PartnerService, Operation(oId1, inV ar)), t1)=⇒
(∃t2)Happens(invoke

−
rc(PartnerService, Operation(oId1)), t2) ∧

Initiates (invoke
−

rc(PartnerService, Operation(oId1)), equalTo(inV ar1, inV ar), t2) ∧ (t1 < t2).
∀(t2:time) Happens(invoke

−
rc(PartnerService, Operation(oId)), t2)) ∧

Initiates (invoke
−

rc(PartnerService, Operation(oId)), equalTo(inV ar1, inV ar), t2) =⇒
(∃t1)Happens(invoke

−
ic(PartnerService, Operation(oId, inV ar)), t1) ∧ (t1 < t2).

∀(t3:time)Happens(reply(PartnerService,Operation(oId2,outVar)),t3) =⇒
(∃t4)Happens(invoke

−
ir(PartnerService, Operation(oId2)), t4) ∧

Initiates (invoke
−

ir(PartnerService, Operation(oId2)), equalTo(outV ar1, outV ar), t4) ∧ (t3 < t4).
∀(t4:time)Happens(invoke

−
ir(PartnerService, Operation(oId2)), t4)) ∧

Initiates (invoke
−

ir(PartnerService, Operation(oId2)), equalTo(outV ar1, outV ar), t4) =⇒
(∃t3)Happens(reply(PartnerService, Operation(oId2, outV ar)), t3) ∧ (t3 < t4).

Figure 5. Rendez-vous style invocation

4 Implementation

As a verification back-end, we have used an auto-
mated induction-based theorem prover SPIKE [22].
More details about the verification process and the en-
coding ingredients can be found in [22].

Then, to support the choreography aspects intro-
duced in this paper, we have extended our BPEL2EC
tool presented in [21]. The BPEL2EC tool is built as a
parser that can automatically transform a given WS-
BPEL process into EC formulas according to the trans-
formation scheme. It takes as input the specification
of the Web service composition as a set of coordinated
Web services in WSBPEL and produces as output the
behavioral specification of this composition in Event
Calculus. The description of this implementation is
beyond the scope of this paper and may be found in
[21].

However, this tool already supports the orchestra-
tion aspect model of BPEL and does not provide any
support for the choreography level. In this section, we
would like to focus on the basic structure of our exten-
sion to the BPEL2EC tool depicted in Figure 7.

The tool was developed using Java programming
language. Since BPEL and WSDL are xml specifica-
tions, we have implemented two xml parsers. The both
were developed using the application programming in-
terface JDOM (Java Document Object Model).

The starting point is a set of Web service com-

Figure 7. Basic structure of BPEL2EC tool

positions specifications in BPEL and all interfaces
of the Web services participating in the collabora-
tion. Interactions detection module serves to reveal
all inter-compositions interactions using BPEL and
WSDL parsers. The output of this step is a set of
all peer-to-peer relationships between the actual part-
ners. The mapping step, use the EC translation rules
defined in section 3.6 to model interactions previously
identified and build port connectors between every two
interacting partners. Those models are saved into log
files which will be useful for both verification and vali-
dation by measuring the actual run time deviation with

Figure 8. A screenshot of the BPEL2EC tool

respect to the models.

Figure 8 shows a snapshot of BPEL2EC in action.
The BPEL and WSDL specifications are loaded into
BPEL2EC tool which generates the formal models in
terms of rules expressed in EC language. Note that the
tool saves automatically the results in log files. This
enables the designer to check the translation process.

5 Conclusion

In this paper, we have described an elaboration of
composition models to support a view of interacting
Web service composition processes extending the map-
ping from BPEL4WS to EC discussed in our previ-
ous work [22], and introducing Web service interfaces
for use in modelling between services. The ability to
model these conversations is important to discovering
how Web service interactions fulfill a choreography sce-
nario and if the conversation protocol implement is
compatible with that of partnered services. In essence,
our view of modelling has moved from analyzing a lo-
cal process, or in other word a single composition, with
that of other services and their interactions. We have
also extended the BPEL2EC tool to support multiple
process conversations as an implementation of our ap-
proach.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Busi-
ness Process Execution Language for Web Ser-
vices, Version 1.1. Standards proposal by BEA
Systems, International Business Machines Corpo-
ration, and Microsoft Corporation, 2003.

[2] A. Arkin, S. Askary, B. Bloch, and F.Curbera.
Web services business process execution language
version 2.0. Technical report, OASIS, December
2004.

[3] A. Barros, M. Dumas, and P. Oaks. Crit-
ical overview of the web services choreogra-
phy description language (ws-cdl), March 2005.
http://www.bptrends.com.

[4] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull,
M. Lenzerini, and M. Mecella. Modeling data pro-
cesses for service specifications in colombo. In
M. Missikoff and A. D. Nicola, editors, EMOI-
INTEROP, volume 160 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2005.

[5] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull,
and M. Mecella. Automatic composition of web
services in colombo. In A. Cal, D. Calvanese,
E. Franconi, M. Lenzerini, and L. Tanca, editors,
SEBD, pages 8–15, 2005.

[6] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo.
Formalizing web service choreographies. Electr.
Notes Theor. Comput. Sci., 105:73–94, 2004.

[7] S. Ceri, P. Fraternali, and A. Bongio. Web mod-
eling language (webml): a modeling language for
designing web sites. Comput. Netw., 33(1-6):137–
157, 2000.

[8] D. Fahland and W. Reisig. ASM-based seman-
tics for BPEL: The negative control flow. In D.
Beauquier and E. Börger and A. Slissenko, editor,
Proc. 12th International Workshop on Abstract
State Machines, pages 131–151, Paris, France,
March 2005.

[9] A. Ferrara. Web services: A process algebra ap-
proach. In Proceedings of the 2nd international
conference on Service oriented computing, pages
242–251, New York, NY, USA, 2004. ACM Press.

[10] J. Fisteus, L. Fernández, and C. Kloos. Formal
verification of BPEL4WS business collaborations.
In K. Bauknecht, M. Bichler, and B. Proll, editors,
Proceedings of the 5th International Conference on
Electronic Commerce and Web Technologies (EC-
Web ’04), volume 3182 of Lecture Notes in Com-
puter Science, pages 79–94, Zaragoza, Spain, Aug.
2004. Springer-Verlag, Berlin.

[11] H. Foster, J. Kramer, J. Magee, and S. Uchitel.
Model-based verification of web service composi-
tions. In 18th IEEE International Conference on
Automated Software Engineering (ASE), 2003.

[12] X. Fu. Formal Specification and Verification
of Asynchronously Communicating Web Services.
Phd Thesis, Santa Barbara, CA, USA,University
of California, 2004.

[13] X. Fu, T. Bultan, and J. Su. Analysis of inter-
acting bpel web services. In WWW ’04: Proceed-
ings of the 13th international conference on World
Wide Web, pages 621–630, New York, NY, USA,
2004. ACM Press.

[14] R. Kazhamiakin, M. Pistore, and L. Santuari.
Analysis of communication models in web ser-
vice compositions. In WWW ’06: Proceedings of
the 15th international conference on World Wide
Web, pages 267–276, New York, NY, USA, 2006.
ACM.

[15] R. Kowalski and M. J. Sergot. A logic-based cal-
culus of events. New generation Computing 4(1),
pages 67–95, 1986.

[16] J. Magee and J. Kramer. Concurrency: state mod-
els & Java programs. John Wiley & Sons, Inc.,
New York, NY, USA, 1999.

[17] I. Manolescu, M. Brambilla, S. Ceri, S. Comai, and
P. Fraternali. Model-driven design and deploy-
ment of service-enabled web applications. ACM
Trans. Inter. Tech., 5(3):439–479, 2005.

[18] A. Martens. Analyzing Web Service Based Busi-
ness Processes. In M. Cerioli, editor, Proceedings
of the 8th International Conference on Fundamen-
tal Approaches to Software Engineering (FASE
2005), volume 3442 of Lecture Notes in Computer
Science, pages 19–33. Springer-Verlag, Berlin,
2005.

[19] C. Ouyang, W. Aalst, S. Breutel, M. Dumas, , and
H. Verbeek. Formal Semantics and Analysis of
Control Flow in WS-BPEL. BPM Center Report
BPM-05-15, BPMcenter.org, 2005.

[20] M. Pistore, M. Roveri, and P. Busetta.
Requirements-driven verification of web services.
Electr. Notes Theor. Comput. Sci., 105:95–108,
2004.

[21] M. Rouached, W. Gaaloul, W. M. P. van der Aalst,
S. Bhiri, and C. Godart. Web service mining and
verification of properties: An approach based on
event calculus. In Proceedings 14th International
Conference on Cooperative Information Systems
(CoopIS 2006), November 2006.

[22] M. Rouached and C. Godart. Requirements-
driven verification of wsbpel processes. In Pro-
ceedings of the IEEE International Conference on
Web Services (ICWS’07). Salt Lake City, Utah,
USA, July 9-13 2007.

[23] C. Stahl. Transformation von BPEL4WS in
Petrinetze (In German). Master’s thesis, Hum-
boldt University, Berlin, Germany, 2004.

[24] F. van Breugel and M. Koshkina. Mod-
els and verification of bpel. Avail-
able at http://www.cse.yorku.ca/
franck/research/drafts/tutorial.pdf, 2006.

[25] Y. Yang, Q. Tan, and Y. Xiao. Verifying web
services composition based on hierarchical colored
petri nets. In IHIS ’05: Proceedings of the first in-
ternational workshop on Interoperability of hetero-
geneous information systems, pages 47–54, New
York, NY, USA, 2005. ACM Press.

