21 research outputs found

    Dynamic Virtual Network Reconfiguration Over SDN Orchestrated Multitechnology Optical Transport Domains

    Get PDF
    Network virtualization is an emerging technique that enables multiple tenants to share an underlying physical infrastructure, isolating the traffic running over different virtual infrastructures/tenants. This technique aims to improve network utilization, while reducing the complexities in terms of network management for operators. Applied to this context, software defined networking (SDN) paradigm can ease network configurations by enabling network programmability and automation, which reduces the amount of operations required from both service and infrastructure providers. SDN techniques are decreasing vendor lock-in issues due to specific configuration methods or protocols. Application-based Network Operations (ABNO) is a toolbox of key network functional components with the goal of offering application-driven network management. Service provisioning using ABNO may involve direct configuration of data plane elements or delegate it to several control plane modules. We validate the applicability of ABNO to multi-tenant virtual networks in multi-technology optical domains based on two scenarios, in which multiple control plane instances are orchestrated by the architecture. Congestion Detection and Failure Recovery, are chosen to demonstrate fast recalculation and reconfiguration, while hiding the configurations in the physical layer from the upper layer.Grant numbers : supported by the Spanish Ministry of Economy and Competitiveness through the project FARO (TEC2012-38119)

    Multi-layer virtual transport network management

    Full text link
    Nowadays there is an increasing need for a general paradigm which can simplify network management and further enable network innovations. Software Defined Networking (SDN) is an efficient way to make the network programmable and reduce management complexity, however it is plagued with limitations inherited from the legacy Internet (TCP/IP) architecture. In this paper, in response to limitations of current Software Defined Networking (SDN) management solutions, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs) over different scopes (i.e., regions of operation). Different from the traditional virtual network model which mainly focuses on routing/tunneling, our VTN provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, and it involves all mechanisms (e.g., addressing, routing, error and flow control, resource allocation) needed to support such transport flows. Based on this approach, we design and implement a management architecture, which recurses the same VTN-based management mechanism for enterprise network management. Our experimental results show that our management architecture achieves better performance.National Science Foundation awards: CNS-0963974 and CNS-1346688

    Amaru: plug&play resilient in-band control for SDN

    Get PDF
    Software-Defined Networking (SDN) is a pillar of next-generation networks. ImplementingSDN requires the establishment of a decoupled control communication, which might be installed either as anout-of-band or in-band network. While the benefits of in-band control networks seem apparent, no standardprotocol exists and most of setups are based on ad-hoc solutions. This article defines Amaru, a protocolthat provides plug&play resilient in-band control for SDN with low-complexity and high scalability. Amarufollows an exploration mechanism to find all possible paths between the controller and any node of thenetwork, which drastically reduces convergence time and exchanged messages, while increasing robustness.Routing is based on masked MAC addresses, which also simplifies routing tables, minimizing the numberof entries to one per path, independently of the network size. We evaluated Amaru with three differentimplementations and diverse types of networks and failures, and obtained excellent results, providing almoston-the-fly rerouting and low recovery time.Comunidad de MadridUniversidad de Alcal

    ESTADO DEL ARTE MPLS-TP CONMUTACIÓN MULTIPROTOCOLO MEDIANTE ETIQUETAS - PERFIL DE TRANSPORTE

    Get PDF
    La creciente demanda en servicios de telecomunicaciones genera la necesidad de desarrollar diferentes modelos de red. En el año 2008, la UIT-T une sinergias con la IETF para desarrollar un protocolo llamado MPLS-TP cuya arquitectura representa el resultado la agregación de la eficiencia en el transporte de paquetes de IP/MPLS con la fiabilidad en el transporte de SONET/SDH. Este trabajo presenta un estado del arte de MPLS-TP donde se plasman los estudios actuales y avances relacionados con ésta tecnología: modelos de arquitectura óptica, modelos de protección en OAM. Además se presenta la estructura, funcionamiento y características que hacen de MPLS-TP una opción para las redes de transporte de siguiente generación. El material de apoyo para el desarrollo de este artículo ha sido obtenido de la base documental de recursos electrónicos con contenido científico de apoyo a la investigación de la Universidad Distrital Francisco José de Caldas

    Конструювання трафіку в програмно-конфігурованих мережах на основі технології Big Data

    Get PDF
    Бакалаврська дипломна робота присвячена вирішенню проблеми конструювання трафіку в програмно-конфігурованих мережах в реальному часі та з використанням історичної інформації про мережу. Розглянуті способи моніторингу та аналізу трафіку вирішують проблему збору і використання статистичних даних. Розроблений програмний продукт забезпечує можливість моделювання системи конструювання трафіку на основі парадигм Big Data з метою подальшого впровадження способу в існуючі системи моніторингу та аналізу.The Bachelor's thesis is devoted to solving the problem of traffic engineering in software-defined networks in real time and using historical information about the network. The considered methods of traffic monitoring and analysis solve the problem of collecting and using statistical data. The developed software product provides the ability to model the traffic design system based on Big Data paradigms in order to further implement the method in existing monitoring and analysis systems

    Multi-layer virtual transport network design and management

    Full text link
    Nowadays there is an increasing need for a general paradigm that can simplify network management and further enable network innovations. Software Defined Networking (SDN) is an efficient way to make the network programmable and reduce management complexity, however it is plagued with limitations inherited from the legacy Internet (TCP/IP) architecture. On the other hand, service overlay networks and virtual networks are widely used to overcome deficiencies of the Internet. However, most overlay/virtual networks are single-layered and lack dynamic scope management. Furthermore, how to solve the joint problem of designing and mapping the overlay/virtual network requests for better application and network performance remains an understudied area. In this thesis, in response to limitations of current SDN management solutions and of the traditional single-layer overlay/virtual network design, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs) over different scopes (i.e., regions of operation). Different from the traditional overlay/virtual network model which mainly focuses on routing/tunneling, our VTN approach provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, i.e., it involves all mechanisms (e.g., addressing, routing, error and flow control, resource allocation) needed to meet application requirements. Our approach inherently provides a multi-layer solution for overlay/virtual network design. The contributions of this thesis are threefold: (1) we propose a novel VTN-based management approach to enterprise network management; (2) we develop a framework for multi-layer VTN design and instantiate it to meet specific application and network goals; and (3) we design and prototype a VTN-based management architecture. Our simulation and experimental results demonstrate the flexibility of our VTN-based management approach and its performance advantages

    Optimization of BGP Convergence and Prefix Security in IP/MPLS Networks

    Get PDF
    Multi-Protocol Label Switching-based networks are the backbone of the operation of the Internet, that communicates through the use of the Border Gateway Protocol which connects distinct networks, referred to as Autonomous Systems, together. As the technology matures, so does the challenges caused by the extreme growth rate of the Internet. The amount of BGP prefixes required to facilitate such an increase in connectivity introduces multiple new critical issues, such as with the scalability and the security of the aforementioned Border Gateway Protocol. Illustration of an implementation of an IP/MPLS core transmission network is formed through the introduction of the four main pillars of an Autonomous System: Multi-Protocol Label Switching, Border Gateway Protocol, Open Shortest Path First and the Resource Reservation Protocol. The symbiosis of these technologies is used to introduce the practicalities of operating an IP/MPLS-based ISP network with traffic engineering and fault-resilience at heart. The first research objective of this thesis is to determine whether the deployment of a new BGP feature, which is referred to as BGP Prefix Independent Convergence (PIC), within AS16086 would be a worthwhile endeavour. This BGP extension aims to reduce the convergence delay of BGP Prefixes inside of an IP/MPLS Core Transmission Network, thus improving the networks resilience against faults. Simultaneously, the second research objective was to research the available mechanisms considering the protection of BGP Prefixes, such as with the implementation of the Resource Public Key Infrastructure and the Artemis BGP Monitor for proactive and reactive security of BGP prefixes within AS16086. The future prospective deployment of BGPsec is discussed to form an outlook to the future of IP/MPLS network design. As the trust-based nature of BGP as a protocol has become a distinct vulnerability, thus necessitating the use of various technologies to secure the communications between the Autonomous Systems that form the network to end all networks, the Internet

    A Framework for MPLS in Transport Networks

    Full text link
    corecore