9,564 research outputs found

    Reputation-based Wi-Fi Deployment

    Get PDF
    Wi-Fi networks have a very strong potential: They are easy to deploy, they use unlicensed frequencies and they provide Internet connectivity that is several times faster than by cable modem. However, two major problems still need to be solved: the lack of a seamless roaming scheme and the variable quality of service experienced by the users. The reputation-based solution presented in this paper solves both problems: It allows a mobile node to connect to a foreign Wireless Internet Service Provider (WISP) in a secure way while preserving its anonymity and it encourages the WISPs to provide the users with good QoS. We analyze the robustness of our solution against various attacks and we prove by means of simulations that our reputation model indeed encourages the WISPs to behave correctly. We also propose a simple mechanism that allows the WISPs to predict the QoS they are able to offer to the (mobile) clients

    Reputation-based Wi-Fi Deployment - Protocols and Security Analysis

    Get PDF
    In recent years, wireless Internet service providers (WISPs) have established thousands of WiFi hot spots in cafes, hotels and airports in order to offer to travelling Internet users access to email, web or other Internet service. However, two major problems still slow down the deployment of this kind of networks: the lack of a seamless roaming scheme and the variable quality of service experienced by the users. This paper provides a response to these two problems: We present a solution that, on the one hand, allows a mobile node to connect to a foreign WISP in a secure way while preserving its anonymity and, on the other hand, encourages the WISPs to provide the users with good QoS. We analyse the robustness of our solution against various attacks and we prove by means of simulations that our reputation model indeed encourages the WISPs to behave correctly

    Intrusion Detection Systems for Community Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are being increasingly used to provide affordable network connectivity to communities where wired deployment strategies are either not possible or are prohibitively expensive. Unfortunately, computer networks (including mesh networks) are frequently being exploited by increasingly profit-driven and insidious attackers, which can affect their utility for legitimate use. In response to this, a number of countermeasures have been developed, including intrusion detection systems that aim to detect anomalous behaviour caused by attacks. We present a set of socio-technical challenges associated with developing an intrusion detection system for a community wireless mesh network. The attack space on a mesh network is particularly large; we motivate the need for and describe the challenges of adopting an asset-driven approach to managing this space. Finally, we present an initial design of a modular architecture for intrusion detection, highlighting how it addresses the identified challenges

    Fully Distributed Cooperative Spectrum Sensing for Cognitive Radio Networks

    Get PDF
    Cognitive radio networks (CRN) sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. The detection capability of a radio system can be enhanced if the sensing process is performed jointly by a group of nodes so that the effects of wireless fading and shadowing can be minimized. However, taking a collaborative approach poses new security threats to the system as nodes can report false sensing data to force a wrong decision. Providing security to the sensing process is also complex, as it usually involves introducing limitations to the CRN applications. The most common limitation is the need for a static trusted node that is able to authenticate and merge the reports of all CRN nodes. This paper overcomes this limitation by presenting a protocol that is suitable for fully distributed scenarios, where there is no static trusted node

    Efficient access of mobile flows to heterogeneous networks under flash crowds

    Get PDF
    Future wireless networks need to offer orders of magnitude more capacity to address the predicted growth in mobile traffic demand. Operators to enhance the capacity of cellular networks are increasingly using WiFi to offload traffic from their core networks. This paper deals with the efficient and flexible management of a heterogeneous networking environment offering wireless access to multimode terminals. This wireless access is evaluated under disruptive usage scenarios, such as flash crowds, which can mean unwanted severe congestion on a specific operator network whilst the remaining available capacity from other access technologies is not being used. To address these issues, we propose a scalable network assisted distributed solution that is administered by centralized policies, and an embedded reputation system, by which initially selfish operators are encouraged to cooperate under the threat of churn. Our solution after detecting a congested technology, including within its wired backhaul, automatically offloads and balances the flows amongst the access resources from all the existing technologies, following some quality metrics. Our results show that the smart integration of access networks can yield an additional wireless quality for mobile flows up to thirty eight percent beyond that feasible from the best effort standalone operation of each wireless access technology. It is also evidenced that backhaul constraints are conveniently reflected on the way the flow access to wireless media is granted. Finally, we have analyzed the sensitivity of the handover decision algorithm running in each terminal agent to consecutive flash crowds, as well as its centralized feature that controls the connection quality offered by a heterogeneous access infrastructure owned by distinct operators
    • 

    corecore