13 research outputs found

    Reputation-Based Trust for a Cooperative, Agent-Based Backup Protection Scheme for Power Networks

    Get PDF
    This thesis research explores integrating a reputation-based trust mechanism with an agent-based backup protection system to improve the performance of traditional backup relay methods that are currently in use in power transmission systems. Integrating agent technology into relay protection schemes has been previously proposed to clear faults more rapidly and to add precision by enabling the use of adaptive protection methods. A distributed, cooperative trust system such as that used in peer-to-peer file sharing networks has the potential to add an additional layer of defense in a protection system designed to operate with greater autonomy. This trust component enables agents in the system to make assessments using additional, behavioral-based analysis of cooperating protection agents. Simulation results illustrate the improved decision-making capability achieved by incorporating this cooperative trust method when experiencing abnormal or malicious communications. The integration of this additional trust component provides an added push for implementing the proposed agent-based protection schemes to help mitigate the impact from wide-area disturbances and the cascading blackouts that often follow. As the push for electric grid modernization continues, an agent-based trust system including this type of behavioral-based analysis will also benefit other smart components connecting critical grid control and monitoring information systems

    A Review on Various Trust Models in Cloud Environment

    Get PDF

    Testing the Fault Tolerance of a Wide Area Backup Protection System using SPIN

    Get PDF
    Cyber-physical systems are increasingly prevalent in daily life. Smart grids in particular are becoming more interconnected and autonomously operated. Despite the advantages, new challenges arise in the form of defending these assets. Recent studies reveal that small-scale, coordinated cyber-attacks on only a few substations across the U.S. could result in cascading failures affecting the entire nation. In support of defending critical infrastructure, this thesis tests the fault tolerance of a backup protection system. Each transmission line in the system incorporates autonomous agents which monitor the status of the line and make decisions regarding the safety of the grid. Various malfunctions that could occur from real-life attacks are simulated in the grid with the intent of determining its ability to successfully respond to faults despite adversity. The SPIN model checker is used to execute all combinations of fault location and malfunctions to determine which types can occur, and how many, before the system is unable to properly clear a fault. With results analyzed, the decision making process of the model is revised to increase its fault tolerance

    Enhancing Trust in the Smart Grid by Applying a Modified Exponentially Weighted Averages Algorithm

    Get PDF
    The main contribution of this thesis is the development and application of a modified Exponentially Weighted Moving Algorithm (EWMA) algorithm, and its ability to robustly function in the face varying numbers of bad (malicious or malfunctioning) Special Protection System (SPS) nodes. Simulation results support the use of the proposed modified EWMA reputation based trust module in SPSs within a smart grid environment. This modification results in the ability to easily maintain the system above the minimum acceptable frequency of 58.8 Hz at the 95% confidence interval, when challenged with test cases containing 5, 10 and 15 bad node test cases out of 31 total load nodes. These promising results are realized by incorporating the optimal modified EWMA strategy, as identified by Receiver Operating Characteristic (ROC) techniques, where an optimal strategy is revealed. The optimal strategy maximizes true positives while minimizing false positives. Implementation of a modified EWMA within a reputation based special protection system does not account for each scenario that an electrical power engineer may face in the field. Instead, this research demonstrates that such an algorithm provides a robust environment to test within, in the hope of successfully meeting challenges and/or opportunities of the future

    An Application of Con-Resistant Trust to Improve the Reliability of Special Protection Systems within the Smart Grid

    Get PDF
    This thesis explores an application of a con-resistant trust mechanism to improve the performance of communications-based special protection systems to further enhance their effectiveness and resiliency. New initiatives in the energy sector are paving the way for the emergent communications-based smart grid technology. Smart grids incorporate modern technologies in an effort to be more reliable and efficient. However, with the benefits of this new technology comes added risk. This research utilizes a con-resistant trust mechanism as a method to quickly identify malicious or malfunctioning protection system nodes in order to mitigate the resulting instabilities in the smart grid. The feasibility and performance of this trust architecture is demonstrated through experiments comparing a simulated special protection system implemented with a con-resistant trust mechanism and without via an analysis of variance statistical model. The simulations yield positive results when implementing the con-resistant trust mechanism within the communications-based special protection system for the smart grid

    Reputation-Based Trust for a Cooperative Agent-Based Backup Protection Scheme

    No full text

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    Smart Grid Relay Protection and Network Resource Management for Real-Time Communications.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Air Force Institute of Technology Research Report 2010

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physic

    Air Force Institute of Technology Research Report 2011

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics
    corecore