8 research outputs found

    A Distributed Ledger Based Infrastructure for Smart Transportation System and Social Good

    Get PDF
    This paper presents a system architecture to promote the development of smart transportation systems. Thanks to the use of distributed ledgers and related technologies, it is possible to create, store and share data generated by users through their sensors, while moving. In particular, IOTA and IPFS are used to store and certify data (and their related metadata) coming from sensors or by the users themselves. Ethereum is exploited as the smart contract platform that coordinates the data sharing and provisioning. The necessary privacy guarantees are provided by the usage of Zero Knowledge Proof. We show some results obtained from some use case scenarios that demonstrate how such technologies can be integrated to build novel smart services and to promote social good in user mobility.Comment: Proceedings of the IEEE Consumer Communications and Networking Conference 2020 (CCNC 2020

    Realization of blockchain in named data networking-based internet-of-vehicles

    Get PDF
    The revolution of Internet-of-vehicles (IoV) has stimulated a substantial response from academia, research and industry due to its massive potential to improve overall transportation. Current IoV faces huge challenges due to its reliance on the IP-based network architecture. Therefore, Named Data Networking (NDN) is proposed as a promising architecture to solve issues posed by IP-based systems. Recently, Blockchains (BCs) are utilized within IoV to increase network security. However, the integration of BC within NDN-enabled IoV is still an open research problem. In this study, we proposed a novel tier-based architecture known as “Blockchain in NDN-enabled Internet-of-Vehicles (BINDN)” which can support BC within NDN-enabled IoV. BINDN can be used as a reference architecture to design security solutions in NDN-enabled IoV using BC. Further, it provides an extensive set of applications including IoV security, trust management and privacy enhancements. Moreover, we highlighted major challenges and issues when integrating BC within NDN-enabled IoV.N/

    A Framework Based on Distributed Ledger Technologies for Data Management and Services in Intelligent Transportation Systems

    Get PDF
    Data are becoming the cornerstone of many businesses and entire systems infrastructure. Intelligent Transportation Systems (ITS) are no different. The ability of intelligent vehicles and devices to acquire and share environmental measurements in the form of data is leading to the creation of smart services for the benefit of individuals. In this paper, we present a system architecture to promote the development of ITS using distributed ledgers and related technologies. Thanks to these, it becomes possible to create, store and share data generated by users through the sensors on their devices or vehicles, while on the move. We propose an architecture based on Distributed Ledger Technologies (DLTs) to offer features such as immutability, traceability and verifiability of data. IOTA, a promising DLT for IoT, is used together with Decentralized File Storages (DFSes) to store and certify data (and their related metadata) coming from vehicles or by the users' devices themselves (smartphones). Ethereum is then exploited as the smart contract platform that coordinates the data sharing through access control mechanisms. Privacy guarantees are provided by the usage of distributed key management systems and Zero Knowledge Proof. We provide experimental results of a testbed based on real traces, in order to understand if DLT and DFS technologies are ready to support complex services, such as those that pertain to ITS. Results clearly show that, while the viability of the proposal cannot be rejected, further work is needed on the responsiveness of DLT infrastructures

    A Distributed Ledger based infrastructure for Intelligent Transportation Systems

    Get PDF
    Intelligent Transportation Systems (ITS) are proposed as an efficient way to improve performances in transportation systems applying information, communication, and sensor technologies to vehicles and transportation infrastructures. The great amount of vehicles produced data, indeed, can potentially lead to a revolution in ITS development, making them more powerful multifunctional systems. To this purpose, the use of Vehicular Ad-hoc Networks (VANETs) can provide comfort and security to drivers through reliable communications. Meanwhile, distributed ledgers have emerged in recent years radically evolving the way that we used to consider finance, trust in communication and even renewing the concept of data sharing and allowing to establish autonomous, secured, trusted and decentralized systems. In this work an ITS infrastructure based on the combination of different emerging Distributed Ledger Technologies (DLTs) and VANETs is proposed, resulting in a transparent, self-managed and self-regulated system, that is not fully managed by a central authority. The intended design is focused on the user ability to use any type of DLT-based application and to transact using Smart Contracts, but also on the access control and verification over user’s vehicle produced data. Users "smart" transactions are achieved thanks to the Ethereum blockchain, widely used for distributed trusted computation, whilst data sharing and data access is possible thanks to the use of IOTA, a DLT fully designed to operate in the Internet of Things landscape, and IPFS, a protocol and a network that allows to work in a distributed file system. The aim of this thesis is to create a ready-to-work infrastructure based on the hypothesis that every user in the ITS must be able to participate. To evaluate the proposal, an infrastructure implementation is used in different real world use cases, common in Smart Cities and related to the ITS, and performance measurements are carried out for DLTs used

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Reputation-based blockchain for secure NDN caching in vehicular networks

    No full text
    International audienceEnormous research efforts have been investigated in Vehicular Ad Hoc Networking to improve users safety, traffic condition, and provide different reliable services, that are challenging tasks to accomplish in the current Internet model. In-network caching is one of the promising features of Named Data Networking, a new future Internet architecture based on content name instead of the host address. It aims to enhance the network performance, data availability, distribution, and access. The applicability of NDN in VANET introduced several issues, especially in the security and trust relationships. In this paper, we present a reputation-based blockchain mechanism to secure the cache in the vehicular environment and enhance the trust between cache stores and consumer vehicles. The obtained results demonstrate that our scheme outperforms the normal NDN behavior by providing only trust content in the networ

    Blockchain Technology for Intelligent Transportation Systems: A Systematic Literature Review

    Get PDF
    The use of Blockchain technology has recently become widespread. It has emerged as an essential tool in various academic and industrial fields, such as healthcare, transportation, finance, cybersecurity, and supply chain management. It is regarded as a decentralized, trustworthy, secure, transparent, and immutable solution that innovates data sharing and management. This survey aims to provide a systematic review of Blockchain application to intelligent transportation systems in general and the Internet of Vehicles (IoV) in particular. The survey is divided into four main parts. First, the Blockchain technology including its opportunities, relative taxonomies, and applications is introduced; basic cryptography is also discussed. Next, the evolution of Blockchain is presented, starting from the primary phase of pre-Bitcoin (fundamentally characterized by classic cryptography systems), followed by the Blockchain 1.0 phase, (characterized by Bitcoin implementation and common consensus protocols), and finally, the Blockchain 2.0 phase (characterized by the implementation of smart contracts, Ethereum, and Hyperledger). We compared and identified the strengths and limitations of each of these implementations. Then, the state of the art of Blockchain-based IoV solutions (BIoV) is explored by referring to a large and trusted source database from the Scopus data bank. For a well-structured and clear discussion, the reviewed literature is classified according to the research direction and implemented IoV layer. Useful tables, statistics, and analysis are also presented. Finally, the open problems and future directions in BIoV research are summarized
    corecore