12 research outputs found

    Security and Privacy Issues in Cloud Computing

    Full text link
    Cloud computing transforming the way of information technology (IT) for consuming and managing, promising improving cost efficiencies, accelerate innovations, faster time-to-market and the ability to scale applications on demand (Leighton, 2009). According to Gartner, while the hype grew ex-ponentially during 2008 and continued since, it is clear that there is a major shift towards the cloud computing model and that the benefits may be substantial (Gartner Hype-Cycle, 2012). However, as the shape of the cloud computing is emerging and developing rapidly both conceptually and in reality, the legal/contractual, economic, service quality, interoperability, security and privacy issues still pose significant challenges. In this chapter, we describe various service and deployment models of cloud computing and identify major challenges. In particular, we discuss three critical challenges: regulatory, security and privacy issues in cloud computing. Some solutions to mitigate these challenges are also proposed along with a brief presentation on the future trends in cloud computing deployment

    A Neighborhood-Based Trust Protocol for Secure Collaborative Routing in Wireless Mobile D2D HetNets

    Get PDF
    Heterogeneous Device-to-Device mobile networks are characterised by frequent network disruption and unreliability of peers delivering messages to destinations. Trust-based protocols has been widely used to mitigate the security and performance problems in D2D networks. Despite several efforts made by previous researchers in the design of trust-based routing for efficient collaborative networks, there are fewer related studies that focus on the peers’ neighbourhood as a routing metrics’ element for a secure and efficient trust-based protocol. In this paper, we propose and validate a trust-based protocol that takes into account the similarity of peers’ neighbourhood coefficients to improve routing performance in mobile HetNets environments. The results of this study demonstrate that peers’ neighborhood connectivity in the network is a characteristic that can influence peers’ routing performance. Furthermore, our analysis shows that our proposed protocol only forwards the message to the companions with a higher probability of delivering the packets, thus improving the delivery ratio and minimizing latency and mitigating the problem of malicious peers ( using packet dropping strategy)

    Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks

    Get PDF
    This chapter discusses the need of security and privacy protection mechanisms in aggregation protocols used in wireless sensor networks (WSN). It presents a comprehensive state of the art discussion on the various privacy protection mechanisms used in WSNs and particularly focuses on the CPDA protocols proposed by He et al. (INFOCOM 2007). It identifies a security vulnerability in the CPDA protocol and proposes a mechanism to plug that vulnerability. To demonstrate the need of security in aggregation process, the chapter further presents various threats in WSN aggregation mechanisms. A large number of existing protocols for secure aggregation in WSN are discussed briefly and a protocol is proposed for secure aggregation which can detect false data injected by malicious nodes in a WSN. The performance of the protocol is also presented. The chapter concludes while highlighting some future directions of research in secure data aggregation in WSNs.Comment: 32 pages, 7 figures, 3 table

    A Secure and User Privacy-Preserving Searching Protocol for Peer-to-Peer Networks

    Get PDF
    File sharing peer-to-peer networks have become quite popular of late as a new paradigm for information exchange among large number of users in the Internet. However, these networks suffer from several problems such as fake content distribution, free riding, whitewashing, poor search scalability, lack of a robust trust model and absence of user privacy protection mechanism. In this paper, a secure and efficient searching scheme for peer-to-peer networks has been proposed that utilizes topology adaptation by constructing an overlay of trusted peers where the neighbors are selected based on their trust ratings and content similarities. While increasing the search efficiency by intelligently exploiting the formation of semantic community structures among the trustworthy peers, the scheme provides a highly reliable module for protecting the privacy of the users and data in the network. Simulation results have demonstrated that the proposed scheme provides efficient searching to good peers while penalizing the malicious peers by increasing their search times

    Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.Comment: 32 pages, 10 figures. The work is an extended version of the author's previous works submitted in CoRR: arXiv:1107.5538v1 and arXiv:1102.1226v

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    corecore