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Abstract: File sharing peer-to-peer networks have become quite 

popular of late as a new paradigm for information exchange among 
large number of users in the Internet. However, these networks 
suffer from several problems such as fake content distribution, free 
riding, whitewashing, poor search scalability, lack of a robust trust 
model and absence of user privacy protection mechanism. In this 
paper, a secure and efficient searching scheme for peer-to-peer 
networks has been proposed that utilizes topology adaptation by 
constructing an overlay of trusted peers where the neighbors are 
selected based on their trust ratings and content similarities. While 
increasing the search efficiency by intelligently exploiting the 
formation of semantic community structures among the trustworthy 
peers, the scheme provides a highly reliable module for protecting 
the privacy of the users and data in the network. Simulation results 
have demonstrated that the proposed scheme provides efficient 
searching to good peers while penalizing the malicious peers by 
increasing their search times.   
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1. Introduction 
The term peer-to-peer (P2P) system encompasses a broad 

set of distributed applications which allow sharing of 
computer resources by direct exchange between systems. 
The goal of a P2P system is to aggregate resources available 
at the edge of Internet and to share it cooperatively among 
users. Specially, the file sharing P2P systems have become 
popular as a new paradigm for information exchange among 
large number of users in the Internet. They are more robust, 
scalable, fault tolerant and offer better availability of 
resources than the traditional client server model. Depending 
on the presence of a central server, P2P systems can be 
classified as centralized or decentralized [11]. In 
decentralized architecture, both resource discovery and 
resource download are distributed. Decentralized P2P 
architectures may further be classified as structured or 
unstructured networks. In structured networks, there are 
certain restrictions on the placement of contents and the 
network topologies. In unstructured P2P networks, however, 
placement of contents is unrelated to the topologies of the 
network. Unstructured P2P networks perform better than 
their structured counterparts in dynamic environments. 
However, they need efficient search mechanisms and they 
also suffer from numerous problems such as: fake content 
distribution, free riding (peers who do not share, but 
consume resources), whitewashing (peers who leave and 
rejoin the system in order to avoid penalties) and lack of 
scalability in searching. Open and anonymous nature of P2P 
applications lead to complete lack of accountability of the 
contents that a peer may put in the network. The malicious 
peers often use these networks to do content poisoning and 

to distribute harmful programs such as Trojan Horses and 
viruses [12]. Distributed reputation based trust management 
systems have been proposed by researchers to provide 
protection against malicious content distribution [1]. The 
main drawbacks of these schemes are their high message 
exchange overheads and their susceptibility to 
misrepresentation. Guo et al. have proposed trust-aware 
adaptive P2P topology to control free-riders and malicious 
peers [7]. In [3] and [25], topology adaptation is used to 
reduce inauthentic file downloads. However, these schemes 
do not work well in unstructured networks. Poor search 
scalability is another problem. Traditional mechanisms such 
as controlled flooding, random walker and topology 
evolution all lack scalability. Zhuge et al. have proposed 
trust-based probabilistic search algorithm called P-walk to 
improve search efficiency and to reduce unnecessary traffic 
in P2P networks [28]. In P-walk, neighboring peers assign 
trust scores to each other. During routing, peers 
preferentially forward queries to the highly ranked 
neighbors. However, its performance in large-scale 
unstructured network is questionable. To combat free riders, 
various trust-based incentive mechanisms are presented in 
[26]. Most of these mechanisms, however, involve large 
overhead of computations. 

To combat the problem of inauthentic downloads as well 
as to improve search scalability while protecting the privacy 
of the users, this paper proposes an adaptive trust-aware 
algorithm that is robust and scalable. This work is an 
extension of our previously published scheme which is based 
on construction of an overlay of trusted peers where 
neighbours are selected based on their trust ratings and 
content similarities [14, 15]. It increases search efficiency by 
taking advantage of implicit semantic community structures 
formed as a result of topology adaptation since most of the 
queries are resolved within the community [14, 15]. 
However, the novel contribution of the current work is that it 
combines the functionalities of a robust trust management 
model and the semantic community formation to provide a 
secure and efficient searching scheme while protecting the 
privacy of the users. The trust management scheme 
segregates the honest peers from malicious peers, based on 
both first-hand and second-hand information, and the 
semantic community formation allows topology adaptation 
to form cluster of peers sharing similar contents in the 
network. The formation of the semantic communities also 
enables the scheme to form a neighborhood of trust which is 
utilized to protect user privacy in the network.  

The rest of the paper is organized as follows. Section 2 
discusses some related work. Section 3 presents the proposed 
algorithm for secure and privacy-aware searching. For the 
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benefit of the readers, we present the entire algorithm 
including the one presented in [14, 15]. As mentioned in the 
previous paragraph, the scheme presented in this paper has a 
robust trust management model and privacy preserving 
module which were not present in the scheme described in 
[14, 15]. Section 4 first introduces various metrics to 
measure the performance of the proposed algorithm, and 
then presents the simulation results. A brief discussion is 
also made on the comparative analysis of the performance of 
the proposed scheme with some of the existing similar 
schemes in the literature. Section 5 concludes the paper 
while highlighting some future scope of work. 

2. Related Work 
In [5], a searching mechanism is proposed that is based on 

discovery of trust paths among the peers in a peer-to-peer 
network. A global trust model based on distance-weighted 
recommendations has been proposed in [10] to quantify and 
evaluate the peers in a peer-to-peer network. In [3], a 
protocol named adaptive peer-to-peer technologies (APT) 
for the formation of adaptive topologies has been proposed 
to reduce spurious file download and free riding, where a 
peer connects to those peers from whom it is most likely to 
download satisfactory content. It adds or removes neighbors 
based on local trust and connection trust which are decided 
by its transaction history. The scheme follows a defensive 
strategy for punishment where a peer equally punishes both 
malicious peers as well as neighbors through which it 
receives response from malicious peers. This strategy is 
relaxed in the reciprocal capacity-based adaptive topology 
protocol (RC-ATP), where a peer connects to others which 
have higher reciprocal capacity [25]. Reciprocal capacity is 
defined based on the peer’s capacity of providing good files 
and of recommending source of download. While RC-ATP 
provides better network connectivity than APT, and reduces 
the cost of inauthentic downloads, it has a large overhead of 
topology adaptation. In [9], an algorithm has been presented 
to reduce the number of downloads of inauthentic files in a 
file-sharing peer-to-peer network. Each peer is assigned a 
unique global trust value that is computed based on the 
historical activities of the peer in the network. A distributed 
and secure method based on Power iteration is also presented 
for computing the global trust values of the peers. Based on 
the global trust values, the malicious peers are identified and 
isolated from the network. Xio et al. have proposed an 
adaptive connection establishment (ACE) protocol that 
constructs an overlay multicast tree by including each source 
peer and the neighboring peers within a certain diameter 
from the source peer [27]. It further optimizes the connecting 
edges in the overlay graph that are not included in the tree 
while retaining the scope of the search. The protocol is 
completely distributed since the peers do not need global 
knowledge of the whole overlay network while using the 
search protocol.  

There are some significant difference between the 
proposed algorithm and APT and RC-ATP. First, in the 
proposed scheme, the links in the original overlays are never 
deleted to avoid network partitioning. Second, the robustness 
of the proposed protocol in presence of malicious peers is 
higher than that of APT and RC-ATP protocols as shown in 
the experimental results. Third, as APT and RC-ATP both 

use flooding to locate resource, they have poor search 
scalability. The proposed scheme takes the advantages of 
semantic communities to improve QoS of search. Fourth, 
APT and RC-ATP do not employ any robust trust model for 
security in searching and for user identity and data privacy 
protection. The central part of the proposed searching 
mechanism in this paper is a robust trust management model. 
Finally, unlike APT and RC-ATP, the proposed algorithm 
scheme punishes malicious peers by blocking query initiated 
by them. This ensures that malicious peers are not allowed to 
consume the resources and services available in the network. 

3. The Secure and Privacy-Aware Searching 
Algorithm 

This section is divided into two sub-sections. In Section 
3.1, the various parameters and network environment of p2p 
networks are discussed. In Section 3.2, the proposed search 
algorithm is presented with the details of its features related 
to security and user privacy protection. Both these sub-
sections are divided into several sub-sections, each one 
discussing a particular feature of the proposition.  

3.1  The network environment 

To derive meaningful conclusion from the proposed 
algorithm, the proposed scheme have been modelled in P2P 
networks in a realistic fashion. The factors that are taken into 
consideration for design of the scheme are as follows. 

3.1.1  Network topology 

The topology of a P2P network plays an important role for 
the analysis of trust management among its peers and for 
designing a searching scheme. Following the work in [3] and 
[25], the network has been modelled as a power law graph. 
In a power law network, degree distribution of nodes follows 
power law distribution, i.e. fraction of nodes having degree L 
is L-k where k is a network dependent constant. Prior to each 
simulation cycle, a fixed fraction of peers chosen randomly 
is marked as malicious. As the algorithm executes, the peers 
adjust topology locally to connect to the peers which have 
better chance to provide good files in future, and drop 
malicious peers from their neighborhood. The network links 
are categorized into two types: connectivity link and 
community link. The connectivity links are the edges of the 
original power law network which provide seamless 
connectivity among the peers. To prevent the network from 
being partitioned, these links are never deleted. On the other 
hand, community links are added probabilistically between 
the peers who know each other, and have already interacted 
with each other before. A community link may be deleted 
when the perceived trustworthiness of a peer falls in the 
perception of its neighbors. A limit is put on the additional 
number of edges that a node can acquire to control 
bandwidth usage and query processing overhead in the 
network. This increase in network load is measured relative 
to the initial network degree (corresponding to connectivity 
edges). Let final_degree(x) and initial_degree(x) be the 
initial and final degree of a node x. The relative increase in 
connectivity (RIC) as computed in (1) is constrained by a 
parameter called edge limit. 
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3.1.2  Content distribution 

The dynamics of a P2P network are highly dependent on 
the volume and variety of files each peer chooses to share. 
Hence a model reflecting real-world P2P networks is 
required. It has been observed that peers are in general 
interested in a subset of the contents in the P2P network [4]. 
Also, the peers are often interested only in the files from a 
few content categories. Among these categories some are 
more popular than others. It has been shown that Gnutella 
content distribution follows zipf distribution [13]. Keeping 
this in mind, both content categories and file popularity 
within each category is modelled with zipf distribution with 
α = 0.8. 

Content distribution model: The content distribution 
model in [13] is followed for the purpose of simulation. In 
this model, each distinct file fc,r is abstractly represented by 
the tuple (c, r), where c represents the content category to 
which the file belongs, and r represents its popularity rank 
within a content category c. Let content categories be C = 
{C1, C2,....,C32}. Each content category is characterized by 
its popularity rank. For example, if C1 = 1, C2 = 2 and C3 = 
3, then C1 is more popular than C2 and hence it is more 
replicated than C2 and so on. Also there are more files in 
category C1 than C2. 

 
Table 1. Content distribution in peers  

 
Peers  Content categories 

P1 
P2 
P3 
P4 
P5 

C1, C2, C3 
C3, C4, C6, C7 
C2, C4, C7, C8 
C1, C2 
C1, C5, C6 

 
Each peer randomly chooses between three to six content 

categories to share files and shares more files belonging to 
more popular categories. Table 1 shows an illustrative 
content distribution among 5 peers. The category C1 is more 
replicated as it is the most popular category. Peer 1 (P1) 
shares files in three categories: C1, C2, C3, where it shares 
maximum number of files in category C1, followed by 
category C2 and so on. On the other hand, Peer 3 (P3) shares 
maximum number of files in category C2 as it is the most 
popular among the categories chosen by it. 

3.1.3  Query initiation model 

The authors in [13] suggest that peers usually query for files 
which are available in the network, and are in the content 
category of their interest. In each cycle of simulation, active 
peers issue queries. However, the number of queries a peer 
issues may vary from peer to peer. Using the Poisson 
distribution this is modelled as follows. If M is the total 
number of queries to be issued in each cycle of simulation, 
and N is the number of peers present in the network, query 
rate 

N
M

=λ is the mean of the Poisson process. The 

probability that a peer issues K queries in a cycle is: 

!
)(#

K
eKofqueriesp

KKλ−

== . The probability that a peer issues 

query for the file r depends on the peer’s interest level in 
category c and rank r of the file within that category. 

3.1.4  Trust management engine 

Trust and reputation based models are widely used for 
security systems in self-organizing networks like mobile ad 
hoc networks (MANETs), wireless sensor networks (WSNs), 
and wireless mesh networks (WMNs) [16, 17, 18, 19, 20]. 
These models can be exploited in unstructured and dynamic 
p2p networks as well. The make the proposed searching 
algorithm secure, a trust management engine is designed 
which helps the peers to compute trust ratings of other peers 
from past transactions as well as recommendation from its 
neighbor. For computation of trust values for the peers, a 
method similar to the one proposed in [6] is followed. The 
framework employs a beta distribution for reputation 
representation, updates and integration. The first-hand 
information and second-hand (recommendation from 
neighbors) are combined to compute the reputation value of 
a peer. The weight assigned by a peer i to a second-hand 
information received from a node k is a function of 
reputation of node k as maintained in node i. For each peer j, 
a reputation Rij is computed by a neighbor peer i. The 
reputation is embodied in the Beta model which has two 
parameters: αij and βij. While αij represents the number of 
successful transactions (i.e. authentic file downloads) that 
peer i had with peer j, βij represents the number of 
unsuccessful transactions (i.e., unauthentic file downloads). 
The reputation of peer j as maintained by peer i is computed 
using (2). 
 
                            )1,1( ++= ijijij BetaR βα                            (2) 

 
The trust metric of a peer is the expected value of its 

reputation and is given by (3). 
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The second-hand information is presented to peer i by its 

neighbor peer k. The peer i receives the reputation Rkj of peer 
j from peer k in the form of the two parameters αkj and βkj. 
After receiving this new information, the peer i combines it 
with its current assessment Rij to obtain a new reputation 
Rij

new as shown in (4). 
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In (4), the values of αij

new and βij
new are given by (5) and 

(6) as follows. 
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The proposed trust model gives more weight to recent 
observations, which is used for updating the reputation value 
using direct observation. For updating the reputation value 
using the second-hand information, Dempster-Shafer theory 
[24] and the belief discounting model [8] are used. The 
reputation of a recommending peer is automatically taken 
into account while computing the reputation of the reported 
peer. This eliminates the need of a separate deviation test. As 
mentioned earlier in this sub-section (i.e., Section 3.1.4), the 
trust value of a peer is computed as the statistical expected 
value of its reputation. The trust value of a peer lies in the 
interval [0, 1]. Peer i considers peer j as trustworthy if Sij ≥  
0. 5, and malicious if Sij < 0:5. 

3.1.5  Identity of the peers 

Each peer generates a 1024 bit public/private RSA key pair. 
The public key serves as the identity of the peer. The 
identities are persistent and they enable two peers that have 
exchanged keys to locate and connect to one another 
whenever the peers are online. In addition, a distributed hash 
table (DHT) is maintained that lists the transient IP 
addresses and port numbers for all peers for all applications 
running of the peers. DHT entries for the peer i are signed by 
i and encrypted using its public key. Each entry is indexed 
by a 20 byte randomly generated shared secret, which is 
agreed upon during the first successful connection between 
the two peers. Each peer’s location in the DHT is 
independent of its identity and is determined by hashing the 
client’s current IP address and DHT port. This inhibits 
systematic monitoring of targeted regions of the DHT key 
space since the region for which each peer is responsible is 
determined by that peer’s network address and port. 

3.1.6  Node churning model 

In P2P networks, a large number of peers may join and leave 
at any time. This activity is termed as node churning. To 
simulate node churning, prior to each generation (a set of 
consecutive searches), a fixed percentage of nodes are 
chosen randomly as inactive. These peers neither initiate nor 
respond to a query in that generation and join the system 
latter with their LRU structure cleared. Since in a real world 
network, even in presence of churning, the approximate 
distribution of content categories and files remain 
unchanged, the contents of peers undergoing churn are 
exchanged and new contents are assigned to the peers 
thereby keeping the content distribution unchanged. 

3.1.7  Threat model 

Malicious peers adopt various strategies (threat models) to 
conceal their behavior and disrupt activities in the network. 
Two threat models are considered in the proposed scheme. 
The peers who share good quality files enjoy better 
topological due to topology adaptation. In threat model A, 
malicious peers attempt to circumvent this by providing 
good file occasionally with probability, known as degree of 
deception to lure other peers to form communities with them. 
In threat model B, a group of malicious peer joins the system 
and provides good files until their connectivity reaches a 
maximum value, i.e., the edge limit. The peers then start 
acting maliciously by spreading fake contents in the 

network. 

3.2  The proposed searching algorithm  
The network learns trust information through the search 

and updates trust information and adapts topology based on 
the outcome of the search. The following criteria are kept in 
mind while designing the algorithm: (a) It should improve 
search efficiency as well as search quality (i.e., authentic file 
downloads). (b) It should have minimal overhead in terms of 
computation, storage and message passing. (c) It should 
provide incentives to the peers which share large number of 
authentic files. (d) It should be self-policing in the sense that 
a peer should be able adjust its search strategy based on the 
local estimate of network connectivity. (e) It should be able 
to protect the privacy of the users. The major steps of 
execution of the algorithm are: (i) search, (ii) topology 
adaptation, (iii) trust computing and verification, and (iv) 
user privacy protection. Each of these steps is discussed in 
the following. 

3.2.1  Searching scheme  

A time to live (TTL) bound search is used. At each peer, 
the query is forwarded to a subset of neighbors; the number 
of neighbors is decided based on the local estimate 
connectivity. The connectivity index for peer x is denoted as 
Probcom(x) and is given by (7). 

 

            
)1)((

)()(
−

−
=

edge_limitxgreeinitial_de
xgreeinitial_dedegree(x)xProbcom

   (7) 

 
When Probcom for a node is low, the peer has the capacity 

to accept new community edges and expand community 
structures. Higher the value of Probcom, it is less likely that 
the neighbors will disseminate the queries. As the algorithm 
executes the connectivity of good nodes increases and 
reaches a maximum value. At this time, the peers focus on 
directing the queries to appropriate communities which may 
host the specific file rather than expanding communities. For 
example, if peer i can contact at most 10 neighbors and 
Probcom of j is 0.6, it forwards query to: 10 x (1 - 0.6) = 4 
neighbors only. The search strategy is changed from initial 
TTL limited BFS to directed DFS with the restructuring of 
the network. The search process has two steps: query 
initiation and query forward as explained in the following. 

3.2.1.1  Query initiation 

The initiating peer forms a query packet containing the 
name of the file (c, r) and forwards it to some of its 
neighbors along with Probcom and TTL values. The query is 
disseminated using the following neighbor selection rule. 
The neighbors are ranked based on both their trustworthiness 
and the similarity of interests. Preference is given to the 
trusted neighbors sharing similar contents. Among the 
trusted neighbors, community members having their contents 
matched to the query are preferred. If the number of 
community links is not adequate enough, the query is 
forwarded through connectivity links also. The various cases 
of neighbor selection are illustrated in Fig. 1. 

It is assumed that in each case only two neighbors are 
selected. When the query (c2, f4) reaches the peer P, 
following four cases may occur. In Case 1, the peer P has 
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sufficient number of community neighbors sharing file in the 
category c2. Hence, these peers are chosen for forwarding the 
query. In Case 2, the number of community neighbors 
sharing the requested category of file is not sufficient 
enough. In this scenario, the community neighbors sharing c2 
and c6 categories of files are preferred over the connectivity 
neighbor sharing file category c2 for forwarding the query. In 
Case 3, there is only one community neighbor that shares file 
category c2. Hence that neighbor is chosen for the purpose of 
query forwarding. Among the remaining connectivity 
neighbors, the most trusted one containing c6 is selected. In 
Case 4, there are no community neighbors. Assuming that 
peer P has the same level of trust for all its neighbors, the 
neighbor sharing the matching content category c2 is chosen 
for forwarding the query. Among the rest of the neighbors, 
peer c6 is chosen randomly (since two forwarding peers are 
to be selected). 

  

 
Figure 1. Neighbor selection by peer P for forwarding the 

query string (c2, f4). The community edges and the 
connectivity edges are drawn using solid and dotted lines 

respectively. The peers that receive the query for forwarding 
are shaded. 

3.2.1.2  Query forwarding 

The query forwarding procedures has four steps. (i) Check 
the trust level of peer j: Peer i checks trust rating of peer j 
through check trust rating algorithm (explained in Section 
3.2.3). Selection of peers for further forwarding the query is 
made accordingly. (ii) Check the availability of file: If the 
requested file is found, response is sent to peer j. If TTL 
value has not expired, the following steps are executed. (iii) 
Calculate the number of messages to be sent: It is calculated 
based on the value of Probcom. (iv) Choose neighbors: 
Neighbors are chosen in using neighbor selection rule. The 
search process is shown in Fig. 2. It is assumed that the 
query is forwarded at each hop to two neighbors. The 
matching community links are preferred over connectivity 
links to dispatch query. Peer 1 initiates the query and 
forwards it to two community neighbors 3 and 4. The query 
reaches peer 8 via peer 4. However, peer 8 knows from its 
previous transactions with peer 4 that peer 4 is malicious. 
Hence it blocks the query. The query forwarded by peer 5 is 
also blocked by peer 10 and 11 as both of them know that 
peer 5 is malicious. The query is matched at four peers: 4, 6, 
9 and 12. The search process is shown in Fig. 2. 

 
Figure 2. The breadth first search (BFS) tree for the search 

initiated by peer 1. 
When a query reaches to peer i from peer j, peer i 

forwards the query further in the network as discussed 
below. 

3.2.2  Topology adaptation   

The responses are sorted by the initiating peer i based on 
the reputations of the resource providers and the peer having 
the highest reputation is selected as the source for 
downloading. The requesting peer checks the authenticity of 
the downloaded file. If the file is found to be fake, peer i 
attempts to download the file from other sources until it is 
able to find the authentic resource or no more sources exist 
for searching. The peer then updates the trust ratings and 
possibly adapts the network topology after failed or 
successful download, to bring trusted peers to its 
neighborhood and to drop malicious peers from its 
community. The restructuring of network is controlled by a 
parameter known as degree of rewiring which provides the 
probability with which a link is formed between a pair of 
peers. This parameter allows trust information to propagate 
through the network. The topology adaptation consists of the 
following operations: (i) link deletion: Peer i deletes the 
existing community link with peer j if it finds peer j as 
malicious. (ii) link addition: Peer i probabilistically forms a 
community link with peer j if the resource provided by the 
peer j is found to be authentic. If RIC ≤ edge_limit, for both 
peers i and j, only then an edge can be added subject to the 
approval of resource provider j. If peer j finds that peer i is 
malicious (i.e., its trust value is below the threshold), it 
doesn’t approve the link. 

Fig. 3 illustrates topology adaptation on the network 
topology shown in Fig. 2. In the example shown in Fig. 3, 
peer 1 downloads the file from peer 4 and finds that the file 
is spurious. It reduces the trust score of peer 4 and deletes 
the community link 1-4. It then downloads the file from peer 
6 and gets an authentic file. Peer 1 now sends a request to 
peer 6, and the latter grants the request after checking its 
trust value and the community edge 1-6 is added. The 
malicious peer 4 loses one community link and peer 6 gains 
one community edge. However, the network still remains 
connected by connectivity edges, shown in dotted lines. 
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Figure 3. Topology adaptation based on outcome of the 

search in Figure 2. The malicious nodes are shaded in gray 
color. 

3.2.3  Checking of trust rating of peers   

Trust rating is used at various stages of execution of the 
algorithm to take various decisions such as: possible source 
for download, to stop a query forwarded from a malicious 
node and to adapt the topology. A least recently used (LRU) 
data structure is used at each peer to keep track of 32 most 
recent peers it has interacted with. When no transaction 
history is available, a peer seeks recommendation from its 
neighbors using trust query. When peer i doesn’t have trust 
score of peer j in its LRU history, it first seeks 
recommendation about j from all of its community 
neighbors. If none of its community neighbors possesses any 
information about j, peer i initiates a directed DFS search. 
The trust computation model has been presented in Section 
3.1.4. 

3.2.4  User privacy protection in searching    

User privacy has emerged as a very critical issue in many 
of the network-based applications [21, 22, 23]. The trust-
based searching scheme described above does not guarantee 
any privacy requirement of the requester (i.e. the initiator of 
the query). For protecting the privacy of the user, several 
enhancement of the algorithm are proposed. Following cases 
are identified for privacy preservation. 
 

 
Figure 4. Identity protection of the requesting peer i from 

the supplier peer k by use of trusted peer j. REQ and RES are 
the request and response message respectively. 

3.2.4.1  Protection of the identity of the requesting peer 

In this case, as shown in Fig. 4, instead of sending the 
request straightway to the supplier peer, the requesting peer 
asks one of its trusted peers (which may or may not be its 
neighbor) to look up the data on its behalf. Once the query 
propagation module successfully identifies the possible 
supplier of the resource, the trusted peer serves as a proxy to 
deliver the data to the requester node. Other peers including 
the supplier of the resource will not be able to know the real 

requester. Hence, the requester’s privacy is protected. Since 
the requestor’s identity is only known to its trusted peer, the 
strength of privacy is dependent on the effort required to 
compromise the trusted peer. As mentioned in Section 3.1.5, 
the message communicated the peers are encrypted by 1024 
bit RSA key, which is a provably secure algorithm. Hence, 
the privacy of the requester is highly protected. 

3.2.4.2  Protecting the data handle 

To improve the achieved privacy level, the data handle 
may not be put in the request at the beginning. When a 
requester initiates the request, it computes the hash value of 
the handle and reveals only a part of the hash result in the 
request sent to its trusted peer. The steps 1 and 2 in Fig. 5 
represent these activities. Each peer receiving the request 
compares the revealed partial hash to hash codes of the data 
handles that it holds. Depending on the length of the 
revealed part, the receiving peer may find multiple matches. 
This does not, however, imply that the peer has the requested 
data. Thus this peer will provide a candidate set, along with a 
certificate of its public key, to the requester. If the matched 
set is not empty, the peer will construct a Bloom filter [2] 
based on the left parts of the matched hash codes, and send it 
back to the trusted peer. The trusted peer forwards it back to 
the requester. These are represented by the steps 3 and 4 in 
Fig. 5. Examining the filters, the requester can eliminate 
from the candidate data supplier list all peers that do not 
have the required data. It then encrypts the complete request 
with the supplier’s public key and gets the requested data 
with the help from its trusted node. The steps 5, 6, 7 and 8 in 
Fig. 5 represent these activities. By adjusting the length of 
the revealed hash code, the requestor can control the number 
of eliminated peers. The level of privacy is improved 
manifold since the malicious peers need to both compromise 
the trusted node and break the Bloom filter and hash 
function. 

 

 
Figure 5. Protecting data handle using trusted node. Peer i 
and k are the requester and the supplier peer respectively. 

Peer j is the trusted peer of the requester peer i. 

3.2.4.3  Hiding the data content  

Although the privacy-preservation level has been improved 
during the look-up phase using the previous two schemes, 
the privacy of the requester will be compromised if the 
trusted node can see the data content when it relays the 
packets for the requester. To improve the privacy level and 
prevent eavesdropping, we can encrypt the data handle and 
the data content. If the identity of the supplier is known to 
the requester, it can encrypt the request using the supplier’s 
public key. The public key of the requester cannot be used 
because the certificate will reveal its identity. The problem is 
solved in the following manner. The requester generates a 
symmetric key and encrypts it using a supplier’s public key. 
Only the supplier can recover the key and use it to encrypt 
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data. To prevent the trusted node of the requester from 
conducting a man-in-the-middle attack, the trusted node is 
required to sign the packet. This provides non-repudiation 
evidence, and shows that the packet is not generated by the 
trusted node itself. The privacy level has been improved 
since now the malicious nodes need to break the encryption 
keys as well. 

4. Performance Evaluation  
To analyze the performance of the proposed algorithm, 

several metrics are first defined. An extensive evaluation of 
the performance of the proposed scheme is then made based 
on these metrics. 

4.1  Attempt ratio (AR) 

A peer keeps on downloading files from various sources 
based on their trust rating till it gets the authentic file. AR is 
the probability that the authentic file is downloaded in the 
first attempt. A high value of AR is desirable for a searching 
scheme to be efficient and scalable. 

4.2  Effective attempt ration (EAR) 

It measures the cost of downloading an authentic file by a 
good peer in comparison to the cost incurred by a malicious 
peer. If P(i) be the total number of attempts made by the peer 
i to download an authentic file, EAR is given by (8). 
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In (8), M and N are the number of malicious and good 

peers issuing queries in a particular generation. For example, 
EAR = 50 implies that if a good peer needs one attempt to 
download an authentic file, a malicious peer will need two 
attempts. 

4.3  Query miss ratio (QMR) 

Since the formation of semantic communities takes some 
time, there will be a high rate of query misses in the first few 
generations of search. However, as the algorithm executes, 
the rate of query miss is expected to fall for the good peers. 
QMR is defined as the ratio of the number of search failures 
to the total number of searches in a generation. 

4.4  Hit per message (HM) 

Due to the formation of semantic communities in the 
network, number of messages required to get a hit is 
expected to fall down as the network topology stabilizes. 
HM measures the search efficiency achieved by the proposed 
search algorithm and it is defined as the number of query hits 
per message irrespective of the authenticity of the file being 
downloaded. 

4.5  Relative increase in connectivity (RIC) 

After a successful download, a requesting peer attempts to 
establish a community edge with the resource provider, if 
approved by the latter. This ensures that peers which provide 
good community services are rewarded by having increasing 
number of community neighbors. The metric RIC measures 

the number of community neighbors a peer gains with 
respect to its connectivity neighbors in the initial network 
topology. If Dinit(i) and Dfinal(i) are the initial and final 
degrees of the peer i, and N is the number of peers, then RIC 
for peer i is computed using (9). 
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4.6  Closeness centrality (CCen) 

Since the topology adaptation effectively brings the good 
peers closer to each other, the length of the shortest path 
between a pair of good peers decreases. This intrinsic 
incentive for sharing authentic files is measured by the 
metric CCen. The peers with higher CCen values are 
topologically better positioned. If Pij is the length of the 
shortest path between peer i and peer j through the 
community edges and if V denotes the set of peers, then 
CCen for peer i is given by (10). 
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4.7  Clustering coefficient (CC) 

It gives an indication about how well the network forms 
cliques. It has an important role in choosing the TTL value 
in the search algorithm. With higher values of CC, lower 
TTL values can be used. If Ki be the number of community 
neighbors of peer i, then clustering coefficient (CC) of peer i 
is computed using (11). 
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In (11), Ei is the actual number of community edges 

between the Ki neighbors. CC of the network is taken as the 
average value of all CC(i)s. 

4.8  Largest connected component (LCC) 

The community edges connect nodes which have similar 
content interests and sufficiently high mutual trust between 
each other. If we consider the peers which share a particular 
category of contents, then the community edges form a trust-
aware community overlay. However, it will be highly 
probable that the trust-aware overly graph will be a 
disconnected graph. LCC is the largest connected component 
of this disconnected overlay graph. LCC of the network can 
be taken as a measure of the goodness of the community 
structure since it signifies how strongly the peers with 
similar contents and interests are connected with each other. 

4.9  Trust query propagation overhead (TQPO) 

The peers build trust and reputation information both by 
collection of first-hand and second-hand information. Trust 
query message is propagated when trust information about a 
peer is not available locally in a peer. A trust query message 
involves one DFS round without backtracking. The overhead 
incurred due to trust query propagation is measured by the 
metric called trust query propagation overhead (TQPO). 
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 TQPO is defined as the total number of distinct DFS 
search attempts per generation. It may be noted that a trust 
query may be initiated multiple times for a single file search 
operation: to select a trusted neighbor or to approve a 
community link. 

4.10  Topology adaptation overhead (TAO) 

It gives an idea about the overhead due to the topology 
adaptation and is measured by the number of community 
edges added or deleted in a generation of network 
simulation. Larger number of addition and deletion of 
community edges will lead to increased overhead. 

4.11  Simulation results 

A discrete time simulator written in C is used for 
simulation. In simulation, 6000 peer nodes, 18000 
connectivity edges, 32 content categories are chosen. The 
degree of deception and the degree of rewiring are taken as 
0.1 and 0.3 respectively. The value of the edge_limit is taken 
as 0.3. The TTL values for BFS and DFS are taken as 5 s 
and 10 s respectively. The discrete time simulator simulates 
the algorithm repeatedly on the power law network and 
outputs all the metrics averaged over generations. Barabasi-
Albert generator is used to generate initial power law graph 
with 6000 nodes and approximately 18000 edges. The 
number of search per generation is taken as 5000 while the 
number of generations per cycle of simulation is 100. 

 

 
Figure 6. AR vs. percentage of malicious peers. In (a) 10%, 

and in (b) 20% nodes in the network are malicious. 
 
To check the robustness of the algorithm against attacks 

from malicious peers, the percentage of malicious peers is 
gradually increased. Fig. 6 illustrates the cost incurred by 
each type of peers to download authentic files. As the 
percentage of malicious peers is increased, cost incurred by 
malicious peers to download authentic files decreases while 
that of good peers increases. This is illustrated in Fig. 7 
using EAR. 

It is evident from Fig. 7 that when 10% of peers in the 
network are malicious peers, EAR is 80; i.e., on the average, 
if a good peer needs one attempt to download an authentic 
file, a malicious peer needs 5 attempts to do so. The peers 
who share high quality files acquire good reputation and earn 
more community edges and eventually disseminates query 
through the community edges only. The queries are 
forwarded via trusted peers at each hop, and hence the 
probability of getting authentic files in the first attempt 
increases. However, as the queries forwarded by malicious 
peers are blocked by good peers, they need more attempts to 

download good files. As the percentage of malicious peers in 
the network increases, EAR drops to 20. Up to 60% 
malicious peers in the network, the good peers have higher 
probability to get authentic files in their first attempts. It is 
clear that the proposed algorithm can withstand attacks by 
malicious peers as long as the percentage of malicious peers 
in the network does not exceed 60. 

 

 
Figure 7. EAR vs. percentage of malicious peers. In (a) 10% 

and in (b) 20% nodes are malicious. 
 

 
Figure 8. Avg. EAR vs. percentage of malicious peers in 
networks with and without the trust management scheme. 

 
The performance of the proposed protocol is compared 

with an equivalent power law network with no trust 
management. Since the proposed algorithm allows addition 
of community edges, therefore, to keep the number of edges 
in both networks equal, additional edges are introduced 
between similar peers in the equivalent network. Fig. 8 
shows the comparison of the average EAR values. In the 
network without trust and reputation management, EAR 
drops to zero when at least 50% of nodes in the network are 
malicious. However, in the network with trust management 
(i.e. with the proposed protocol), even with 60% malicious 
peers, EAR is consistently sustained at 20. This clearly 
demonstrates the robustness of the proposed protocol. 

Fig. 9 shows QMR experienced by both types of peers for 
varying percentages of malicious peers in the network. 
Initially, QMR is high as no interest-based communities are 
formed and the searching is essentially a blind (i.e., brute 
force) one. As the algorithm executes further, the peers with 
similar content interests come closer to each other (in terms 
of number of hops between them), and the queries are 
forwarded through the community edges. As a result, QMR 
drops for good peers. It is observed from Fig. 9 that the 
steady state value of QMR for good peers is less than 0.2, 
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and QMR is independent of the percentage of malicious 
peers in the network. This is a significant performance 
achievement of the proposed algorithm. For malicious peers, 
the steady state value of QMR is 0.4. The high QMR for 
malicious peers is due to the fact that the queries from the 
malicious peers are blocked by the good peers. It is evidently 
clear from the results that the proposed algorithm effectively 
rewards the peers which share large number of authentic 
files in the network which in turn helps in making the 
searching process efficient. 

 

 
 

Figure 9. QMR for various percentages of malicious peers 
in the network. 

 

 
Figure 10. HM for malicious and honest peers in the 

network. Percentage of malicious peers in the network is 10. 
 
Fig. 10 shows variation of HM for both types of peers. 

Although, the value of HM for good peers reaches a steady 
state as the topology matures, for malicious peers, the value 
of HM fluctuates quite appreciably. HM for malicious peers 
sometimes attains higher values than the good peers. Since 
the queries forwarded by the malicious peers are blocked, 
HM for these peers are sometimes higher than the good 
peers. The hit here does not mean authentic hit. The 
authentic hit of good peers is higher than that of malicious 
peers as these peers have higher AR values. 

Fig. 11 shows the variation of RIC for each type of peers 
under threat model A. It may be observed that RIC for good 
peers increases to 2.4 (constrained by the edge limit), 
whereas for malicious peers, RIC does not increase beyond 
1.2. With the increase in the percentage of malicious peers, 
the saturation rate slows down albeit the final value remains 
the same. This shows that the proposed algorithm provides 
better connectivity to the peers which share large number of 
authentic files. At the same time the malicious peers are 

blocked gradually and their connectivities in terms of 
community edges are reduced. 

 

 
Figure 11. RIC for various percentages of malicious peers 

under threat model A. In (a) 20% and in (b) 40% peers in the 
network are malicious. 

 

 
Figure 12. RIC for various percentages of malicious peers 

under threat model B. In (a) 20% and in (b) 40% peers in the 
network are malicious. 

 
Fig. 12 shows the variation of RIC under threat model B. 

Since in this model, a malicious peer starts providing fake 
files (i.e., starts acting maliciously) after achieving high 
connectivity because of its good behavior in the past, and 
again stops acting maliciously after it loses a larger number 
of connecting edges, fluctuation in RIC persists throughout 
the simulation period. 

 

 
Figure 13. Closeness centrality for various percentages of 

malicious nodes. In (a) 20% and in (b) 40% nodes are 
malicious. 

     
Fig. 13 presents how the closeness centrality (CCen) of 

good and malicious peers varies in the community topology. 
In computation of CCen, only the community edges have 
been considered. It may be observed that the steady state 
value of CCen for good peers is around 0.12. However, for 
the malicious peers, the CCen value is found to lie in 
between 0.03 to 0.07. This demonstrates that the malicious 
peers are driven to the fringe of the network, while the good 
peers are allowed to form communities. 
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Figure 14. Avg. shortest path distance vs. generations of 

search at the step of ten for various percentages of malicious 
peers. In (a) 30% and in (b) 40% nodes are malicious. 

 
Higher values of CCen also indicate that good peers have 

smaller average shortest path length between them. In the 
simulation, the diameter of the initial network is taken as 5. 
At the completion of a simulation run, if there is no path 
between a pair of peers using community edges, then the 
length of the shortest path between that pair is assumed to be 
arbitrarily long, say 15 (used in Fig. 14). As shown in Fig. 
14, the average shortest path distance (ASPD) decreases 
form the initial value of 15 for both honest and malicious 
nodes. However, the rate and the extent of decrease for the 
good peers are much higher due to the formation of semantic 
communities around them. For malicious peers, after an 
initial fall, the value of ASPD increases consistently and 
finally almost reaches the maximum value of 15. On the 
other hand, the average value of ASPD for good peers is 
observed to be around 6. Since the good peers are connected 
with shorter paths, the query propagations and their 
responses will also be faster among these peers. 

 

 
Figure 15. Clustering coefficient for different percentages of 
malicious peers. In (a) 20% and in (b) 40% of the peers are 

malicious. 
 

Fig. 15 shows clustering coefficient (CC) for each type of 
peers. Since community edges are added based on the 
download history and peers having good reputation gain 
more community edges, clustering coefficient (CC) is high 
for good peers. This leads to triangle formation in the 
communities. To counter this phenomenon, the search 
strategy adapts itself from BFS to DFS to minimize 
redundant message flows in the network. Since edges are 
added based on the download history and similarity of 
interest, community of peers are formed which are connected 
to other community by hub of peers having interest in 
multiple content categories. This leads to lower ASPD for 
good peers. 

  Fig. 16 depicts the size of the largest connected 

component (LCC) for each of the 32 content categories. It 
may be observed that the average size of LCC for all content 
categories remains constant even if the percentage of 
malicious peers in the network increases. This clearly shows 
that the community formation among the good peers is not 
adversely affected by the presence of malicious peers. 

 

 
Figure 16. Largest connected components (LCCs) for 

different content categories. 
 

 
Figure 17. Overhead of trust query propagation for 10% and 

20% malicious peers in the network. 
 
Fig. 17 shows that as the topology of the network matures, 

the steady state value of trust query propagation overhead 
(TQPO) attains a quite low value. The value of TQPO is less 
than 10 when 10% of the peers in the network are malicious. 
Even when the network has 40% of its peers malicious, 
TQPO gradually decreases and reaches a value of 20 within 
the span of 100 generations. Hence, the trust propagation 
module has little impact on the system overhead since the 
trust information is efficiently distributed in the trust-aware 
overlay topology. 

Finally, the overhead due to the topology adaptation in the 
proposed scheme is investigated. As mentioned in Section 
4.10, the overhead due to the topology adaptation is 
measured by the metric TAO, which is defined as the 
number of community edges added or deleted in a 
generation. Fig. 18 shows the variation of TAO for different 
percentages of malicious peers. It is observed that TAO 
starts falling from an initial high value and oscillates with 
small amplitudes. This is due to the fact that initially the 
edge capacities of the peers are not saturated and they 
acquire community edges rapidly. As the algorithm executes, 
the good peers acquire relatively stable neighborhood 
resulting in a sharp decrease in the value of TAO. In the 
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subsequent generations, the value of TAO fluctuates slightly 
since the good nodes delete the existing edges with 
malicious peers as soon as the malicious peers are detected, 
and acquire new community edges with the fellow good 
peers. With the increase in percentage of malicious peers, 
fluctuations in the values of TAO also increase as increasing 
number of nodes get added and deleted in the network. 
However, in all cases, the value of TAO falls sharply and 
attains a very low value once the community topology of the 
peers become stable. This shows that the proposed algorithm 
introduces a very small overhead in computation for 
topology adaptation. 

 

 
Figure 18. Overhead due to topology adaptation under the 
presence of various percentages of malicious peers. In (a) 

20% and in (b) 40% of the peers in the network are 
malicious. 

4.12  Comparison with existing schemes  

In the following, we provide a brief comparative analysis of 
the proposed protocol with two similar protocols existing in 
the literature. In [9], a method to minimize the impact of 
malicious peers on the performance of a peer-to-peer system 
has been proposed, where the global trust value for each peer 
is computed by calculating the left principal Eigen-vector of 
a matrix of normalized local trust value. Since the trust and 
reputation computations are robust, the mechanism is able to 
sustain a high value of AR (i.e. the fraction of authentic 
download) for good peers even when the percentage of 
malicious peers is as high as 80. In contrast, the proposed 
protocol in this paper can support high value of AR for good 
nodes as long as the percentage of malicious peers in the 
network does not exceed 60. However, the scheme based on 
Eigen trust is computationally very intensive and it is 
susceptible to produce unreliable results in case of Byzantine 
failure of some peers. On the other hand, the proposed trust 
management algorithm in this paper is light-weight, and it 
can efficiently identify free riding and Byzantine failure of 
peers while improving on the QoS of searching. In the APT 
protocol [3], as the topology stabilizes, all the paths from the 
good peers to the malicious peers are blocked, and the 
characteristic path lengths of these two types (good and 
malicious) of peers are distinctly different. However, in the 
proposed protocol in this paper, paths still exist between 
good peers and the malicious peers through the connectivity 
edges in the original network. These connectivity edges are 
deleted during the execution of the algorithm. This prevents 
any possibility of network partitioning thereby making the 
protocol more robust. Moreover, the scalability of the 

proposed protocol is higher than that of the APT protocol, 
since it uses a light-weight trust management module. More 
importantly, the APT protocol does not have any mechanism 
to protect user and data privacy. This makes the protocol 
impractical in real-world deployment scenario where user 
privacy is a critical issue. The proposed protocol provides a 
very robust and reliable mechanism for protection of both 
user and data privacy, which makes it more attractive for 
deployment in real-world peer-to-peer networks. 

5. Conclusion  
In this paper, a search mechanism is proposed that solves 
multiple problems in peer-to-peer networks e.g., inauthentic 
download, poor search scalability, combating free riders and 
protecting user privacy. It is shown that by topology 
adaptation, and robust trust management, it is possible to 
isolate the malicious peers while providing topologically 
advantageous positions to the good peers so that good peers 
get faster and authentic responses to their queries. A large 
number of metrics are defined for evaluating the 
performance of the proposed scheme. The protocol is 
simulated on a power-law network. The simulation results 
have demonstrated that the protocol is robust even in 
presence of a large percentage of malicious peers in the 
network. A brief comparative analysis of the scheme has 
been made with some of the well-known similar schemes 
existing in the literature. As a future plan of work, we intend 
to carry out an analysis of the message overhead of the 
privacy module and a detailed comparative study of the 
performance results of the proposed protocol in this paper 
with other existing searching mechanisms for peer-to-peer 
networks. 
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