36,141 research outputs found

    Flow-based reputation with uncertainty: Evidence-Based Subjective Logic

    Full text link
    The concept of reputation is widely used as a measure of trustworthiness based on ratings from members in a community. The adoption of reputation systems, however, relies on their ability to capture the actual trustworthiness of a target. Several reputation models for aggregating trust information have been proposed in the literature. The choice of model has an impact on the reliability of the aggregated trust information as well as on the procedure used to compute reputations. Two prominent models are flow-based reputation (e.g., EigenTrust, PageRank) and Subjective Logic based reputation. Flow-based models provide an automated method to aggregate trust information, but they are not able to express the level of uncertainty in the information. In contrast, Subjective Logic extends probabilistic models with an explicit notion of uncertainty, but the calculation of reputation depends on the structure of the trust network and often requires information to be discarded. These are severe drawbacks. In this work, we observe that the `opinion discounting' operation in Subjective Logic has a number of basic problems. We resolve these problems by providing a new discounting operator that describes the flow of evidence from one party to another. The adoption of our discounting rule results in a consistent Subjective Logic algebra that is entirely based on the handling of evidence. We show that the new algebra enables the construction of an automated reputation assessment procedure for arbitrary trust networks, where the calculation no longer depends on the structure of the network, and does not need to throw away any information. Thus, we obtain the best of both worlds: flow-based reputation and consistent handling of uncertainties

    The Reputation, Opinion, Credibility and Quality (ROCQ) Scheme

    Get PDF
    An implicit assumption of trust in the participants is at the basis of most Peer-to-Peer (P2P) networks. However, in practice, not all participants are benign or cooperative. Identifying such peers is critical to the smooth and effective functioning of a P2P network. In this paper, we present the ROCQ mechanism, a reputation-based trust management system that computes the trustworthiness of peers on the basis of transaction-based feedback. The ROCQ model combines four parameters: Reputation (R) or a peer's global trust rating, Opinion (O) formed by a peer's first-hand interactions, Credibility (C) of a reporting peer and Quality (Q) or the confidence a reporting peer puts on the judgement it provides. We then present a distributed implementation of our scheme over FreePastry, a structured P2P network. Experimental results considering different models for malicious behavior indicate the contexts in which the ROCQ scheme performs better than existing schemes

    Trust beyond reputation: A computational trust model based on stereotypes

    Full text link
    Models of computational trust support users in taking decisions. They are commonly used to guide users' judgements in online auction sites; or to determine quality of contributions in Web 2.0 sites. However, most existing systems require historical information about the past behavior of the specific agent being judged. In contrast, in real life, to anticipate and to predict a stranger's actions in absence of the knowledge of such behavioral history, we often use our "instinct"- essentially stereotypes developed from our past interactions with other "similar" persons. In this paper, we propose StereoTrust, a computational trust model inspired by stereotypes as used in real-life. A stereotype contains certain features of agents and an expected outcome of the transaction. When facing a stranger, an agent derives its trust by aggregating stereotypes matching the stranger's profile. Since stereotypes are formed locally, recommendations stem from the trustor's own personal experiences and perspective. Historical behavioral information, when available, can be used to refine the analysis. According to our experiments using Epinions.com dataset, StereoTrust compares favorably with existing trust models that use different kinds of information and more complete historical information

    Flow-based reputation: more than just ranking

    Full text link
    The last years have seen a growing interest in collaborative systems like electronic marketplaces and P2P file sharing systems where people are intended to interact with other people. Those systems, however, are subject to security and operational risks because of their open and distributed nature. Reputation systems provide a mechanism to reduce such risks by building trust relationships among entities and identifying malicious entities. A popular reputation model is the so called flow-based model. Most existing reputation systems based on such a model provide only a ranking, without absolute reputation values; this makes it difficult to determine whether entities are actually trustworthy or untrustworthy. In addition, those systems ignore a significant part of the available information; as a consequence, reputation values may not be accurate. In this paper, we present a flow-based reputation metric that gives absolute values instead of merely a ranking. Our metric makes use of all the available information. We study, both analytically and numerically, the properties of the proposed metric and the effect of attacks on reputation values

    MORE: Merged Opinions Reputation Model

    Get PDF
    Reputation is generally defined as the opinion of a group on an aspect of a thing. This paper presents a reputation model that follows a probabilistic modelling of opinions based on three main concepts: (1) the value of an opinion decays with time, (2) the reputation of the opinion source impacts the reliability of the opinion, and (3) the certainty of the opinion impacts its weight with respect to other opinions. Furthermore, the model is flexible with its opinion sources: it may use explicit opinions or implicit opinions that can be extracted from agent behavior in domains where explicit opinions are sparse. We illustrate the latter with an approach to extract opinions from behavioral information in the sports domain, focusing on football in particular. One of the uses of a reputation model is predicting behavior. We take up the challenge of predicting the behavior of football teams in football matches, which we argue is a very interesting yet difficult approach for evaluating the model.Comment: 12th European Conference on Multi-Agent Systems (EUMAS 2014

    Bootstrapping trust evaluations through stereotypes

    Get PDF
    Publisher PD

    Asymptotically idempotent aggregation operators for trust management in multi-agent systems

    Get PDF
    The study of trust management in multi-agent system, especially distributed, has grown over the last years. Trust is a complex subject that has no general consensus in literature, but has emerged the importance of reasoning about it computationally. Reputation systems takes into consideration the history of an entity’s actions/behavior in order to compute trust, collecting and aggregating ratings from members in a community. In this scenario the aggregation problem becomes fundamental, in particular depending on the environment. In this paper we describe a technique based on a class of asymptotically idempotent aggregation operators, suitable particulary for distributed anonymous environments

    ResEval: A Mashup Platform for Research Evaluation

    Get PDF
    Bibliometrics has changed out the way the research evaluation conducted, and it is widely used to evaluate research groups, individual research's, department and many more. However establishing fair criteria to evaluate the scientific community, as well as individual publications and researcher, is a tough task and constitutes a challenge that has not been achieved yet. This paper addresses the problem of research evaluation and introduces ResEval, a mashup platform that enables the creation of customize metrics and their computation in order to make the scientific evaluation easier. This platform addresses various problems with current approaches such as data incompleteness, flexibility in defining new metrics, fixed UI restrictions for the customization of metrics and to apply filters
    corecore