121 research outputs found

    Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Distributional Operators

    Full text link
    In this paper we introduce a generalized Sobolev space by defining a semi-inner product formulated in terms of a vector distributional operator P\mathbf{P} consisting of finitely or countably many distributional operators PnP_n, which are defined on the dual space of the Schwartz space. The types of operators we consider include not only differential operators, but also more general distributional operators such as pseudo-differential operators. We deduce that a certain appropriate full-space Green function GG with respect to L:=PTPL:=\mathbf{P}^{\ast T}\mathbf{P} now becomes a conditionally positive definite function. In order to support this claim we ensure that the distributional adjoint operator P\mathbf{P}^{\ast} of P\mathbf{P} is well-defined in the distributional sense. Under sufficient conditions, the native space (reproducing-kernel Hilbert space) associated with the Green function GG can be isometrically embedded into or even be isometrically equivalent to a generalized Sobolev space. As an application, we take linear combinations of translates of the Green function with possibly added polynomial terms and construct a multivariate minimum-norm interpolant sf,Xs_{f,X} to data values sampled from an unknown generalized Sobolev function ff at data sites located in some set XRdX \subset \mathbb{R}^d. We provide several examples, such as Mat\'ern kernels or Gaussian kernels, that illustrate how many reproducing-kernel Hilbert spaces of well-known reproducing kernels are isometrically equivalent to a generalized Sobolev space. These examples further illustrate how we can rescale the Sobolev spaces by the vector distributional operator P\mathbf{P}. Introducing the notion of scale as part of the definition of a generalized Sobolev space may help us to choose the "best" kernel function for kernel-based approximation methods.Comment: Update version of the publish at Num. Math. closed to Qi Ye's Ph.D. thesis (\url{http://mypages.iit.edu/~qye3/PhdThesis-2012-AMS-QiYe-IIT.pdf}

    Solving Support Vector Machines in Reproducing Kernel Banach Spaces with Positive Definite Functions

    Full text link
    In this paper we solve support vector machines in reproducing kernel Banach spaces with reproducing kernels defined on nonsymmetric domains instead of the traditional methods in reproducing kernel Hilbert spaces. Using the orthogonality of semi-inner-products, we can obtain the explicit representations of the dual (normalized-duality-mapping) elements of support vector machine solutions. In addition, we can introduce the reproduction property in a generalized native space by Fourier transform techniques such that it becomes a reproducing kernel Banach space, which can be even embedded into Sobolev spaces, and its reproducing kernel is set up by the related positive definite function. The representations of the optimal solutions of support vector machines (regularized empirical risks) in these reproducing kernel Banach spaces are formulated explicitly in terms of positive definite functions, and their finite numbers of coefficients can be computed by fixed point iteration. We also give some typical examples of reproducing kernel Banach spaces induced by Mat\'ern functions (Sobolev splines) so that their support vector machine solutions are well computable as the classical algorithms. Moreover, each of their reproducing bases includes information from multiple training data points. The concept of reproducing kernel Banach spaces offers us a new numerical tool for solving support vector machines.Comment: 26 page

    Approximation of Stochastic Partial Differential Equations by a Kernel-based Collocation Method

    Full text link
    In this paper we present the theoretical framework needed to justify the use of a kernel-based collocation method (meshfree approximation method) to estimate the solution of high-dimensional stochastic partial differential equations (SPDEs). Using an implicit time stepping scheme, we transform stochastic parabolic equations into stochastic elliptic equations. Our main attention is concentrated on the numerical solution of the elliptic equations at each time step. The estimator of the solution of the elliptic equations is given as a linear combination of reproducing kernels derived from the differential and boundary operators of the SPDE centered at collocation points to be chosen by the user. The random expansion coefficients are computed by solving a random system of linear equations. Numerical experiments demonstrate the feasibility of the method.Comment: Updated Version in International Journal of Computer Mathematics, Closed to Ye's Doctoral Thesi

    A Riemannian-Stein Kernel Method

    Full text link
    This paper presents a theoretical analysis of numerical integration based on interpolation with a Stein kernel. In particular, the case of integrals with respect to a posterior distribution supported on a general Riemannian manifold is considered and the asymptotic convergence of the estimator in this context is established. Our results are considerably stronger than those previously reported, in that the optimal rate of convergence is established under a basic Sobolev-type assumption on the integrand. The theoretical results are empirically verified on S2\mathbb{S}^2

    Multiresolution kernel matrix algebra

    Full text link
    We propose a sparse arithmetic for kernel matrices, enabling efficient scattered data analysis. The compression of kernel matrices by means of samplets yields sparse matrices such that assembly, addition, and multiplication of these matrices can be performed with essentially linear cost. Since the inverse of a kernel matrix is compressible, too, we have also fast access to the inverse kernel matrix by employing exact sparse selected inversion techniques. As a consequence, we can rapidly evaluate series expansions and contour integrals to access, numerically and approximately in a data-sparse format, more complicated matrix functions such as AαA^\alpha and exp(A)\exp(A). By exploiting the matrix arithmetic, also efficient Gaussian process learning algorithms for spatial statistics can be realized. Numerical results are presented to quantify and quality our findings
    corecore