6,051 research outputs found

    Application of Semantics to Solve Problems in Life Sciences

    Get PDF
    Fecha de lectura de Tesis: 10 de diciembre de 2018La cantidad de información que se genera en la Web se ha incrementado en los últimos años. La mayor parte de esta información se encuentra accesible en texto, siendo el ser humano el principal usuario de la Web. Sin embargo, a pesar de todos los avances producidos en el área del procesamiento del lenguaje natural, los ordenadores tienen problemas para procesar esta información textual. En este cotexto, existen dominios de aplicación en los que se están publicando grandes cantidades de información disponible como datos estructurados como en el área de las Ciencias de la Vida. El análisis de estos datos es de vital importancia no sólo para el avance de la ciencia, sino para producir avances en el ámbito de la salud. Sin embargo, estos datos están localizados en diferentes repositorios y almacenados en diferentes formatos que hacen difícil su integración. En este contexto, el paradigma de los Datos Vinculados como una tecnología que incluye la aplicación de algunos estándares propuestos por la comunidad W3C tales como HTTP URIs, los estándares RDF y OWL. Haciendo uso de esta tecnología, se ha desarrollado esta tesis doctoral basada en cubrir los siguientes objetivos principales: 1) promover el uso de los datos vinculados por parte de la comunidad de usuarios del ámbito de las Ciencias de la Vida 2) facilitar el diseño de consultas SPARQL mediante el descubrimiento del modelo subyacente en los repositorios RDF 3) crear un entorno colaborativo que facilite el consumo de Datos Vinculados por usuarios finales, 4) desarrollar un algoritmo que, de forma automática, permita descubrir el modelo semántico en OWL de un repositorio RDF, 5) desarrollar una representación en OWL de ICD-10-CM llamada Dione que ofrezca una metodología automática para la clasificación de enfermedades de pacientes y su posterior validación haciendo uso de un razonador OWL

    Discovering Beaten Paths in Collaborative Ontology-Engineering Projects using Markov Chains

    Full text link
    Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases (ICD) as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the ICD, which is currently under active development by the WHO contains nearly 50,000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding how these stakeholders collaborate will enable us to improve editing environments that support such collaborations. We uncover how large ontology-engineering projects, such as the ICD in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users subsequently change) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain.Comment: Published in the Journal of Biomedical Informatic

    Ontologies, Mental Disorders and Prototypes

    Get PDF
    As it emerged from philosophical analyses and cognitive research, most concepts exhibit typicality effects, and resist to the efforts of defining them in terms of necessary and sufficient conditions. This holds also in the case of many medical concepts. This is a problem for the design of computer science ontologies, since knowledge representation formalisms commonly adopted in this field do not allow for the representation of concepts in terms of typical traits. However, the need of representing concepts in terms of typical traits concerns almost every domain of real world knowledge, including medical domains. In particular, in this article we take into account the domain of mental disorders, starting from the DSM-5 descriptions of some specific mental disorders. On this respect, we favor a hybrid approach to the representation of psychiatric concepts, in which ontology oriented formalisms are combined to a geometric representation of knowledge based on conceptual spaces

    Next generation assisting clinical applications by using semantic-aware electronic health records

    Get PDF
    The health care sector is no longer imaginable without electronic health records. However; since the original idea of electronic health records was focused on data storage and not on data processing, a lot of current implementations do not take full advantage of the opportunities provided by computerization. This paper introduces the Patient Summary Ontology for the representation of electronic health records and demonstrates the possibility to create next generation assisting clinical applications based on these semantic-aware electronic health records. Also, an architecture to interoperate with electronic health records formatted using other standards is presented

    Constructing a lattice of Infectious Disease Ontologies from a Staphylococcus aureus isolate repository

    Get PDF
    A repository of clinically associated Staphylococcus aureus (Sa) isolates is used to semi‐automatically generate a set of application ontologies for specific subfamilies of Sa‐related disease. Each such application ontology is compatible with the Infectious Disease Ontology (IDO) and uses resources from the Open Biomedical Ontology (OBO) Foundry. The set of application ontologies forms a lattice structure beneath the IDO‐Core and IDO‐extension reference ontologies. We show how this lattice can be used to define a strategy for the construction of a new taxonomy of infectious disease incorporating genetic, molecular, and clinical data. We also outline how faceted browsing and query of annotated data is supported using a lattice application ontology

    Dione: An OWL representation of ICD-10-CM for classifying patients’ diseases

    Get PDF

    SNOMED CT standard ontology based on the ontology for general medical science

    Get PDF
    Background: Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT, hereafter abbreviated SCT) is acomprehensive medical terminology used for standardizing the storage, retrieval, and exchange of electronic healthdata. Some efforts have been made to capture the contents of SCT as Web Ontology Language (OWL), but theseefforts have been hampered by the size and complexity of SCT. Method: Our proposal here is to develop an upper-level ontology and to use it as the basis for defining the termsin SCT in a way that will support quality assurance of SCT, for example, by allowing consistency checks ofdefinitions and the identification and elimination of redundancies in the SCT vocabulary. Our proposed upper-levelSCT ontology (SCTO) is based on the Ontology for General Medical Science (OGMS). Results: The SCTO is implemented in OWL 2, to support automatic inference and consistency checking. Theapproach will allow integration of SCT data with data annotated using Open Biomedical Ontologies (OBO) Foundryontologies, since the use of OGMS will ensure consistency with the Basic Formal Ontology, which is the top-levelontology of the OBO Foundry. Currently, the SCTO contains 304 classes, 28 properties, 2400 axioms, and 1555annotations. It is publicly available through the bioportal athttp://bioportal.bioontology.org/ontologies/SCTO/. Conclusion: The resulting ontology can enhance the semantics of clinical decision support systems and semanticinteroperability among distributed electronic health records. In addition, the populated ontology can be used forthe automation of mobile health applications

    Extending and encoding existing biological terminologies and datasets for use in the reasoned semantic web

    Full text link

    Investigating subsumption in DL-based terminologies: A case study in SNOMED CT

    Get PDF
    Formalisms such as description logics (DL) are sometimes expected to help terminologies ensure compliance with sound ontological principles. The objective of this paper is to study the degree to which one DL-based biomedical terminology (SNOMED CT) complies with such principles. We defined seven ontological principles (for example: each class must have at least one parent, each class must differ from its parent) and examined the properties of SNOMED CT classes with respect to these principles. Our major results are: 31% of the classes have a single child; 27% have multiple parents; 51% do not exhibit any differentiae between the description of the parent and that of the child. The applications of this study to quality assurance for ontologies are discussed and suggestions are made for dealing with multiple inheritance
    corecore