2,979 research outputs found

    Contribution of František Matúš to the research on conditional independence

    Get PDF
    summary:An overview is given of results achieved by F. Matúš on probabilistic conditional independence (CI). First, his axiomatic characterizations of stochastic functional dependence and unconditional independence are recalled. Then his elegant proof of discrete probabilistic representability of a matroid based on its linear representability over a finite field is recalled. It is explained that this result was a basis of his methodology for constructing a probabilistic representation of a given abstract CI structure. His embedding of matroids into (augmented) abstract CI structures is recalled and his contribution to the theory of semigraphoids is mentioned as well. Finally, his results on the characterization of probabilistic CI structures induced by four discrete random variables and by four regular Gaussian random variables are recalled. Partial probabilistic representability by binary random variables is also mentioned

    Standard imsets for undirected and chain graphical models

    Full text link
    We derive standard imsets for undirected graphical models and chain graphical models. Standard imsets for undirected graphical models are described in terms of minimal triangulations for maximal prime subgraphs of the undirected graphs. For describing standard imsets for chain graphical models, we first define a triangulation of a chain graph. We then use the triangulation to generalize our results for the undirected graphs to chain graphs.Comment: Published at http://dx.doi.org/10.3150/14-BEJ611 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Analysis of a circular code model

    Get PDF
    A circular code has been identified in the protein (coding) genes of both eukaryotes and prokaryotes by using a statistical method called Trinucleotide Frequency method (TF method) [Arquès & Michel, (1996) J.Theor. Biol. 182, 45-58]. Recently, a probabilistic model based on the nucleotide frequencies with a hypothesis of absence of correlation between successive bases on a DNA strand, has been proposed by Koch & Lehmann [(1997) J.Theor. Biol. 189, 171-174] for constructing some particular circular codes. Their interesting method which we call here Nucleotide Frequency method (NF method), reveals several limits for constructing the circular code observed with protein genes

    Entanglement and Quantum Nonlocality Demystified

    Full text link
    Quantum nonlocality is presented often as the most remarkable and inexplicable phenomenon known to modern science which was confirmed in the experiments proving the violation of Bell Inequalities (BI). It has been known already for a long time that the probabilistic models used to prove BI for spin polarization correlation experiments (SPCE) are incompatible with the experimental protocols of SPCE. In particular these models use a common probability space together with joint probability distributions for various incompatible coincidence experiments and/or conditional independence (Bell's locality). Strangely enough these results are not known or simply neglected. Therefore so called Bell's or quantum nonlocality has nothing to do with the common notion of the non-locality and it should be rather called quantum non-Kolmogorovness or quantum contextuality. We quickly explain the true meaning of various Bell's locality assumptions and show that if local variables describing the measuring instruments are correctly taken into consideration then BI can no longer be proven. In order to demystify even further the entanglement and quantum long range correlations we give an example of a macroscopic entangled "two qubit state". Namely we show that one can prepare two macroscopic systems in such a way that simple realizable local experiments on these systems violate BI. Of course we do not question the usefulness of the long range correlations characterizing the entangled physical systems in the domain of Quantum Information. However one should not forget that the anti-correlations cannot be perfect, that the wave function should not be treated as an attribute of the individual quantum system which can be change instantaneously and that the unperformed experiments have no results.Comment: Corrected typos and omissions, added one reference, eliminated jumps in the reference list and numbering adjuste

    Quantum Gravity: Has Spacetime Quantum Properties?

    Get PDF
    The incompatibility between GR and QM is generally seen as a sufficient motivation for the development of a theory of Quantum Gravity. If - so a typical argumentation - QM gives a universally valid basis for the description of all natural systems, then the gravitational field should have quantum properties. Together with the arguments against semi-classical theories of gravity, this leads to a strategy which takes a quantization of GR as the natural avenue to Quantum Gravity. And a quantization of the gravitational field would in some sense correspond to a quantization of geometry. Spacetime would have quantum properties. But, this strategy will only be successful, if gravity is a fundamental interaction. - What, if gravity is instead an intrinsically classical phenomenon? Then, if QM is nevertheless fundamentally valid, gravity can not be a fundamental interaction. An intrinsically classical gravity in a quantum world would have to be an emergent, induced or residual, macroscopic effect, caused by other interactions. The gravitational field (as well as spacetime) would not have any quantum properties. A quantization of GR would lead to artifacts without any relation to nature. The serious problems of all approaches to Quantum Gravity that start from a direct quantization of GR or try to capture the quantum properties of gravity in form of a 'graviton' dynamics - together with the, meanwhile, rich spectrum of approaches to an emergent gravity and/or spacetime - make this latter option more and more interesting for the development of a theory of Quantum Gravity. The most advanced emergent gravity (and spacetime) scenarios are of an information-theoretical, quantum-computational type.Comment: 31 page
    • …
    corecore