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ABSTRACT 

 

A circular code has been identified in the protein (coding) genes of both eukaryotes and prokaryotes by 

using a statistical method called Trinucleotide Frequency method (TF method) [Arquès & Michel, (1996) J. 

Theor. Biol. 182, 45-58]. 

Recently, a probabilistic model based on the nucleotide frequencies with a hypothesis of absence of 

correlation between successive bases on a DNA strand, has been proposed by Koch & Lehmann [(1997) J. 

Theor. Biol. 189, 171-174] for constructing some particular circular codes. Their interesting method which 

we call here Nucleotide Frequency method (NF method), reveals several limits for constructing the circular 

code observed with protein genes. 
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1 INTRODUCTION 

 

This section is divided into 2 parts. The first part summarizes the results of the circular code ( 0X ) 

identified in the protein genes of both eukaryotes and prokaryotes. The second part recalls the probabilistic 

model of Koch & Lehmann (1997) based on the Nucleotide Frequency method (NF method). 

 

1.1 The circular code 0X  

 

The concept of code "without commas" introduced by Crick et al. (1957) for the protein (coding) 

genes, is a code readable in only one out of three frames. Such a theoretical code without commas, called 

circular code in theory of codes (e.g. Béal, 1993; Berstel & Perrin, 1985), is a particular set X of 

trinucleotides so that a concatenation (a series) of trinucleotides of X, leads to sequences which cannot be 

decomposed in another frame with a concatenation of trinucleotides of X. 

For example, suppose that X is the following set of trinucleotides: X={AAC, AAT, ACC, ATC, ATT, CAG, 

CTC, CTG, GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA, GTC, GTT, TAC, TTC}. Some trinucleotides of 

X are randomly concatenated, for example as follows: 

…CAG,GCC,TTC,AAT,ACC,ACC,CAG,GAA,GAG,GTA,ATT,ACC,AAT,GTA,AAC,TAC,TTC,ACC,ATC… 

The commas between the trinucleotides show the frame of construction (reading frame in biology). Suppose 

now that the commas are “lost” leading to the sequence: 

…CAGGCCTTCAATACCACCCAGGAAGAGGTAATTACCAATGTAAACTACTTCACCATC… 

The problem is to retrieve the original frame of construction. There are 3 obvious possibilities: 

…C,AGG,CCT,TCA,ATA,CCA,CCC,AGG,AAG,AGG,TAA,TTA,CCA,ATG,TAA,ACT,ACT,TCA,CCA,TC… 

…CA,GGC,CTT,CAA,TAC,CAC,CCA,GGA,AGA,GGT,AAT,TAC,CAA,TGT,AAA,CTA,CTT,CAC,CAT,C… 

…CAG,GCC,TTC,AAT,ACC,ACC,CAG,GAA,GAG,GTA,ATT,ACC,AAT,GTA,AAC,TAC,TTC,ACC,ATC… 

If the set X of trinucleotides is a circular code, then there is an unique solution: 

…CAG,GCC,TTC,AAT,ACC,ACC,CAG,GAA,GAG,GTA,ATT,ACC,AAT,GTA,AAC,TAC,TTC,ACC,ATC… 

This unique solution is obtained by choosing a window (sufficiently large) in any position in the sequence 

and then, to verify the belonging of the trinucleotides of the window to X: 

…CAGGCCTTCAATACCACCCAGGAAG  AGG,TAATTACCAATGTAAACTACTTCACCATC… 

…CAGGCCTTCAATACCACCCAGGAAG  A,GGT,AAT,TAC,CAA,TGTAAACTACTTCACCATC… 

…CAGGCCTTCAATACCACCCAGGAAG  AG,GTA,ATT,ACC,AAT,GTA,AAC,TAC,TTC,ACC,ATC,… 

The first decomposition proposed is rejected immediately as the first trinucleotides AGG in the window does 

not belong to X. The second decomposition proposed is rejected with a window of 13 nucleotides. Indeed, 

the first nucleotide A in the window may belong to several trinucleotides of X, e.g. GTA. The trinucleotides 

GGT, AAT and TAC following A belong to X. The next trinucleotide CAA does not belong to X as the 13th 

nucleotide A (from the beginning of the window) differs from the unique possibility G of CAG belonging to X. 

The third decomposition is the original one as all the trinucleotides in the window belong to X. The original 

decomposition of the sequence is automatically deduced. 

 

Such a code was proposed by Crick et al. (1957) in order to explain how the reading of a series of 

nucleotides in the protein genes could code for the amino acids constituting the proteins. The 2 problems 

stressed were: why are there more trinucleotides than amino acids and how to choose the reading frame? 

Crick et al. (1957) have then proposed that only 20 among 64 trinucleotides code for the 20 amino acids. 
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However, the determination of a set of 20 trinucleotides forming a circular code X depends on a great 

number of constraints: 

(i) A trinucleotide with identical nucleotides (AAA, CCC, GGG or TTT) must be excluded from such a code. 

Indeed, the concatenation of AAA with itself does not allow to retrieve the reading (original) frame as there 

are 3 possible decompositions: ...AAA,AAA,AAA,..., ...A,AAA,AAA,AA... and ...AA,AAA,AAA,A... 

(ii) Two trinucleotides related to circular permutation, e.g. ATC and TCA, must be excluded from such a 

code. Indeed, the concatenation of ATC with itself does not allow the retrieval of the reading (original) frame 

as there are 2 possible decompositions: …ATC,ATC,ATC,… and …A,TCA,TCA,TC… 

Therefore, by excluding AAA, CCC, GGG and TTT and by gathering the 60 remaining trinucleotides in 20 

classes of 3 trinucleotides so that, in each class, the 3 trinucleotides are deduced from each other by 

circular permutations, e.g. ATC, TCA and CAT, a circular code has only one trinucleotide per class and 

therefore contains at most 20 trinucleotides (maximal circular code). This trinucleotide number is identical to 

the amino acid number leading to a circular code assigning one trinucleotide per amino acid. 

 

No set of 20 trinucleotides leading to a circular code has been found at this time. Furthermore, the 2 

discoveries that the trinucleotide TTT, an "excluded" trinucleotide in the concept of circular code, codes for 

phenylalanine (Nirenberg & Matthaei, 1961) and that the protein genes are placed in the reading frame with 

a particular trinucleotide, namely the start trinucleotide ATG, have led to give up the concept of circular code 

on the alphabet {A,C,G,T}. For several biological reasons, in particular the interaction between mRNA and 

tRNA, the concept of circular code is resumed later on the alphabet {R,Y} (R=purine=A or G, 

Y=pyrimidine=C or T) with 2 trinucleotide models for the primitive protein genes: RRY (Crick et al., 1976) 

and RNY (N=R or Y) (Eigen & Schuster, 1978). 

 

Unexpectedly, a maximal circular code has recently been identified in the protein genes of both 

eukaryotes and prokaryotes on the alphabet {A,C,G,T} (Arquès & Michel, 1996). This circular code has been 

obtained by 2 methods: 

(i) by computing the occurrence frequencies of the 64 trinucleotides AAA,...,TTT in the 3 frames of protein 

genes and then, by assigning each trinucleotide to the frame associated with its highest frequency (Arquès 

& Michel, 1996). This Trinucleotide Frequency method is called TF method. 

(ii) by computing the 12288 (3×642) autocorrelation functions analysing the probability that a trinucleotide in 

any frame occurs any i bases N after a trinucleotide in a given frame of protein genes and then, by 

classifying these autocorrelation functions according to their modulo 3 periodicity for deducing a frame for 

each trinucleotide (Arquès & Michel, 1997a). 

The maximal circular code identified is the set 0X = {AAC,AAT,ACC,ATC,ATT,CAG,CTC,CTG,GAA,GAC, 

GAG,GAT,GCC,GGC,GGT,GTA,GTC,GTT,TAC,TTC} of 20 trinucleotides in frame 0 of protein genes 

(reading frame). Furthermore, the 2 sets 1X  and 2X  of 20 trinucleotides identified in the frames 1 and 2 

respectively (frames 1 and 2 being the frame 0 shifted by 1 and 2 nucleotides respectively in the 5'-3' 

direction) by these 2 methods, are also maximal circular codes (Table 1a). These 3 circular codes have 

several important properties: 

(i) circularity: 0X  generates 1X  by one circular permutation and 2X  by another circular permutation (1 and 2 

circular permutations of each trinucleotide of 0X  lead to the trinucleotides of 1X  and 2X  respectively) (Table 

1b). 
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(ii) complementarity: 0X  is self-complementary (10 trinucleotides of 0X  are complementary to the 10 other 

trinucleotides of 0X ) and, 1X  and 2X  are complementary to each other (the 20 trinucleotides of 1X  are 

complementary to the 20 trinucleotides of 2X ) (Table 1c). Note that this property is also verified with 

{ }0 0T X AAA,TTT= ∪  and, { }1 1T X CCC= ∪  and { }2 2T X GGG= ∪  (Table 1c). 

(iii) rarity: the occurrence probability of 0X  is equal to 6×10-8. As there are 20 classes of 3 trinucleotides (see 

above), the number of potential circular codes is 320=3486784401. The computed number of complementary 

circular codes with 2 shifted circular codes (called C3 codes), such as 0X , is 216. Therefore, its probability is 

216/320=6×10-8. 

(iv) flexibility: 

- the lengths of the minimal windows to retrieve automatically the frames 0, 1 and 2 with the 3 circular codes 

0X , 1X  and 2X  respectively, are all equal to 13 nucleotides and represent the largest window length among 

the 216 C3 codes. 

- the frequency of misplaced trinucleotides in the shifted frames is equal to 24.6%. If the trinucleotides of X 

are randomly concatenated, for example as follows: 

…GAA,GAG,GTA,GTA,ACC,AAT,GTA,CTC,TAC,TTC,ACC,ATC… 

then, the trinucleotides in frame 1: 

…G,AAG,AGG,TAG,TAA,CCA,ATG,TAC,TCT,ACT,TCA,CCA,TC… 

and the trinucleotides in frame 2: 

…GA,AGA,GGT,AGT,AAC,CAA,TGT,ACT,CTA,CTT,CAC,CAT,C… 

mainly belong to 1X  and 2X  respectively. A few trinucleotides are misplaced in the shifted frames. With this 

example, in frame 1, 9 trinucleotides belong to 1X , 1 trinucleotide (TAC) to 0X  and 1 trinucleotide (TAA) to 

2X . In frame 2, 8 trinucleotides belong to 2X , 2 trinucleotides (GGT, AAC) to 0X  and 1 trinucleotide (ACT) 

to 1X . By computing exactly, the average frequencies of misplaced trinucleotides in frame 1 are 11.9 % for 

0X  and 12.7 % for 2X . In frame 2, the average frequencies of misplaced trinucleotides are 11.9 % for 0X  

and 12.7 % for 1X . The complementarity property explains on the one hand that the frequency equality of 

0X  in frames 1 and 2 and on the other hand, the frequency equality of 2X  in frame 1 and 1X  in frame 2. The 

sum of percentages of misplaced trinucleotides in frame 1 ( 0X and 2X ) is equal to the sum of percentages of 

misplaced trinucleotides in frame 2 ( 0X  and 1X ) and is equal to 24.6 %. This value is close to the highest 

frequency (27.9 %) of misplaced trinucleotides among the 216 C3 codes. 

- the 4 types of nucleotides occur in the 3 trinucleotide sites with the 3 circular codes 0X , 1X  and 2X  (Table 

1a). 

(v) evolutionary: an evolutionary analytical model at 3 parameters (p,q,t) based on an independent mixing of 

the 20 trinucleotides of 0X  with equiprobability (1/20) followed by t≈4 substitutions per trinucleotide 

according to the proportions p≈0.1, q≈0.1 and r=1-p-q≈0.8 in the 3 trinucleotide sites respectively, retrieves 

the frequencies of 0X , 1X  and 2X  observed in the 3 frames of protein genes. 

The proof that 0X , 1X  and 2X  are circular codes, the detailed explanation of the properties (i-iv) and the 

different biological consequences, in particular on the 2-letter genetic alphabets, the genetic code and the 

amino acid frequencies in proteins, are given in Arquès & Michel (1996, 1997a). The property (v) is 
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described in Arquès et al. (1998, 1999). 

Note: a non-complementary circular code has recently been identified in the mitochondrial protein genes 

(Arquès & Michel, 1997b). 

 

1.2 The Nucleotide Frequency method (NF method) 
 

Koch & Lehmann (1997, p. 171) have recently suggested that the self-complementary circular code 

0X  obseved in protein genes could be explained by a method for generating circular codes from nucleotide 

frequencies. This method called here Nucleotide Frequency method (NF method), is briefly recalled by 

keeping the same notations. 

 

Let θip ( )  be the occurrence probability of a given base { }θ∈ A,C,G,T  at position { }∈i 1,2,3  in a 

trinucleotide (triplet) observed in a DNA strand read in frame 0. By supposing that there is no correlation 

between successive bases on a DNA strand, the probability of finding the triplet αβγ  in the frame 0 is given 

by the probabilities product α β γ1 2 3p ( )p ( )p ( )  (independent probabilities). The belonging of the triplet αβγ  to a 

preferential set 0Y  of triplets in frame 0 is then equivalent to the 2 following probability inequalities 

α β γ > γ α β1 2 3 1 2 3p ( )p ( )p ( ) p ( )p ( )p ( )    (1) 

and 

α β γ > β γ α1 2 3 1 2 3p ( )p ( )p ( ) p ( )p ( )p ( )    (2) 

Similar probability inequalities imply that the triplet βγα  (resp. γαβ ) belongs to the preferential set 1Y  (resp. 

2Y ) of triplets in frame 1 (resp. 2). 

 

Koch & Lehmann (1997, p. 173) prove that a preferential set generated from any set of probabilities 

θip ( )  with this method, is a circular code. 

 

Koch & Lehmann (1997, p. 172) also show that, if the probabilities θip ( )  verify the relation 

θ = θ1 3p ( ) p (C( ))  and θ = θ2 2p ( ) p (C( ))    (3) 

where θC( )  denote the complementary base of θ , then the circular code 0Y  is necessarily self-

complementary and the 2 permutated circular codes 1Y  and 2Y  are complementary (called 3C  codes in 

Arquès & Michel, 1996). 

 

The Table 1 in Koch & Lehmann (1997) gives the 12 nucleotide observed frequencies θip ( )  of a base 

{ }θ∈ A,C,G,T  at position { }∈i 1,2,3  of the reading frame for the prokaryotes. These data have been 

obtained from the 44th release of the prokaryotic EMBL database. This Table 1 is recalled in this paper with 

the Table 2a. These 12 probabilities with the NF method lead to a new circular code 0Y ={AAT, AAC, ATT, 

ATC, ACT, CAC, CTT, CTC, GAA, GAT, GAC, GAG, GTA, GTT, GTC, GTG, GCA, GCT, GCC, GCG}. This 

code 0Y  contains 13 trinucleotides of the code 0X  (Table 1a). 
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2 METHOD AND RESULTS 
 

2.1 The Nucleotide Frequency method (NF method) cannot generate the circular code 0X  

 

2.1.1 The NF method does not generate an unique self-complementary circular code 
from the observed probabilities 
 

The approach of Koch & Lehmann (1997) tries to link the self-complementary code X0 and the NF 

method. However, the code Y0 obtained by the NF method from the observed probabilities θip ( )  of a base 

{ }θ∈ A,C,G,T  at position { }∈i 1,2,3  of the reading frame for the prokaryotes is not self-complementary as, 

for example, ∈ 0ACT Y  but = ∉ 0C(ACT) AGT Y . So, this section is devoted to obtain a self-complementary 

circular code with the NF method from probabilities closed to the observed ones. 

 

If the 12 probabilities θip ( )  verify the relation (3), then the circular code computed by the NF method 

is a self-complementary code. However, the relation (3) which contains 6 probability equalities, cannot be 

easily used with observed probabilities. 

 

Koch & Lehmann (1997, p. 172) have mentioned that the 12 probabilities θip ( )  in Table 2a do not 

precisely verify the relation (3) and then, no self-complementary circular code has been proposed. 

 

Furthermore, the NF method generates several self-complementary circular codes if the probabilities 

of Table 2a are slightly modified for verifying the relation (3). Three examples of such self-complementary 

circular codes are presented in Table 2b. The first circular code is obtained with observed frequencies from 

the first and second columns of Table 2a: = =1 3p (A) p (T) 0.276 , = =1 3p (C) p (G) 0.204 , 

= =1 3p (G) p (C) 0.354 , = =1 3p (T) p (A) 0.166 , = =2 2p (A) p (T) 0.285  and ( )= = − ×2 2p (C) p (G) 1 2 0.285 2 . 

The second circular code is obtained with observed frequencies from the second and third columns of Table 

2a: = =1 3p (A) p (T) 0.268 , = =1 3p (C) p (G) 0.242 , = =1 3p (G) p (C) 0.268 , = =1 3p (T) p (A) 0.222 , 

= =2 2p (A) p (T) 0.285  and ( )= = − ×2 2p (C) p (G) 1 2 0.285 2 . The third circular code is obtained with average 

frequencies from Table 2a: ( )= = + =1 3p (A) p (T) 0.276 0.268 2 0.272 , 

( )= = + =1 3p (C) p (G) 0.204 0.242 2 0.223 , ( )= = + =1 3p (G) p (C) 0.354 0.268 2 0.311, 

( )= = + =1 3p (T) p (A) 0.166 0.222 2 0.194 , ( )= = + =2 2p (A) p (T) 0.315 0.285 2 0.3  and 

( )= = + =2 2p (C) p (G) 0.228 0.172 2 0.2 . 

 

In summary, the NF method is not well adapted to reveal an unique self-complementary circular code. 

Furthermore, we shall prove in the next section that the NF method cannot generate the self-complementary 

circular code 0X  which has been identified in the protein genes of both eukaryotes and prokaryotes (Arquès 

& Michel, 1996). 
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2.1.2 Proof that the NF method cannot generate the circular code 0X  

 

This section presents a mathematical proof that the NF method cannot generate the circular code 0X . 

The idea of this proof is the following one. We take the hypothesis that a circular code X containing the 3 

triplets αβγ , δδβ  and γαδ  where { }α β γ δ∈, , , A,C,G,T  is generated by the NF method from the occurrence 

probabilities θip ( )  of a base { }θ∈ A,C,G,T  at the position { }∈i 1,2,3 . Then, this hypothesis is refuted by 

considering several probability inequalities associated with the 3 triplets considered. As the circular code 0X  

contains such 3 triplets (ATC, GGT, CAG), then 0X  cannot be generated by the NF method. 

 

The existence of 3 probabilities θip ( )  generating X by the NF method is taking as hypothesis. 

According to the inequality (1) of the NF method, the triplet αβγ  belonging to X leads to the following 

probability inequality 

α β γ > γ α β1 2 3 1 2 3p ( )p ( )p ( ) p ( )p ( )p ( )    (4) 

According to the inequality (2) of the NF method, the triplet δδβ  belonging to X leads to the following 

probability inequality 

δ δ β > δ β δ1 2 3 1 2 3p ( )p ( )p ( ) p ( )p ( )p ( )    (5) 

Clearly, δ >1p ( ) 0  otherwise the inequality (5) cannot be verified. Therefore, by simplifying (5) 

δ β > β δ2 3 2 3p ( )p ( ) p ( )p ( )    (6) 

According to the inequality (2) of the NF method, the triplet γαδ  belonging to X leads to the following 

probability inequality 

γ α δ > α δ γ1 2 3 1 2 3p ( )p ( )p ( ) p ( )p ( )p ( )    (7) 

Clearly, δ >3p ( ) 0  otherwise the inequality (7) cannot be verified. By rewriting (4) as follows 

α β γ > γ α δ × β δ1 2 3 1 2 3 3 3p ( )p ( )p ( ) p ( )p ( )p ( ) p ( ) p ( )    (8) 

By using (7) with the second member of (8), we obtain 

α β γ > α δ γ × β δ1 2 3 1 2 3 3 3p ( )p ( )p ( ) p ( )p ( )p ( ) p ( ) p ( )    (9) 

As α >1p ( ) 0  and γ >3p ( ) 0 , the inequality (9) can be simplified as follows 

β > δ × β δ2 2 3 3p ( ) p ( ) p ( ) p ( )  

i.e. 

β δ > δ β2 3 2 3p ( )p ( ) p ( )p ( )    (10) 

The inequality (10) is in contradiction with the inequality (6). Therefore, the hypothesis of existence of 3 

probabilities θip ( )  generating X is refuted. 

 

This proof can be applied to the circular code 0X  containing the 3 triplets ATC, GGT and CAG which 

follow the pattern αβγ , δδβ  and γαδ . Therefore, the circular code 0X  cannot be generated by the NF 

method. 
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2.1.3 Development of two algorithms in complement of the proof 
 

The previous section (ii) has proved that the self-complementary circular code 0X  cannot be 

generated by the NF method. This section consists in determining all the self-complementary circular codes 

which can be generated by this NF method. 

 

The first algorithm A1 developed allows the determination of a set S of self-complementary circular 

codes Y based on the NF method. The NF method implies the following property with each code Y of YS . 

The 2 sets of 20 words obtained by circular permutations of a code Y, are complementary circular codes 

(Koch & Lehmann, 1997, p. 173). Such codes Y are called 3C  codes (Arquès & Michel, 1996). 

 

The principle of the algorithm A1 consists in varying the probabilities θip ( )  of the 4 bases at the 3 

positions in the range [0,1] according to the relation (3). For each probability variation step, the algorithm A1 

computes a 3C  code by using the NF method and testes whether this 3C  code has been previously 

generated. Indeed, several sets of probabilities θip ( )  can lead to the same 3C  codes. By varying the 

probabilities θip ( )  with steps becoming smaller and smaller, the number of 3C  codes Y in YS  remains 

constant and equal to 88. These 88 codes Y are listed in Table 3. 

 

The algorithm A1 generates 88 3C  codes Y. However, the flower automaton method identifies 216 3C  

codes (Arquès & Michel, 1996). In order to explain the 216-88=128 remaining 3C  codes, we extend the 

proof (ii) based on the pattern 0P ={αβγ , δδβ , γαδ } to its 2 circular permuted patterns 1P ={βγα , δβδ ,αδγ } 

and 2P ={ γαβ ,βδδ , δγα }. Any circular code containing the pattern 0P  cannot be generated by the NF 

method (proof (ii)). Similarly, the proof (ii) also shows that any circular code containing a circular permuted 

pattern 1P  or 2P , cannot be generated by the NF method. The algorithm A2 developed determines the 3C  

codes among the 216 ones which contains at least one of the 3 previous patterns. There are exactly 128 

such 3C  codes. Therefore, the algorithm A2 confirms the number 88 of 3C  codes Y determined by the 

algorithm A1 whatever the probability variation step used. 

 

In summary, the number of 3C  codes which can be generated by the Nucleotide Frequency method is 

exactly 88. It is important to stress that the 128 other 3C  codes cannot be generated from any sets of 

probabilities, even probabilities which do not verify the relation (3), as the proof (ii) does not make any 

hypothesis on the probabilities. 
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2.2 Remarks on the hypothesis of no correlation between successive bases used in the 
Nucleotide Frequency method (NF method) 
 

The hypothesis of no correlation between successive bases has been justified by the entropy 

approach (Koch & Lehmann, 1997, p. 173). We briefly recall the elementary principles of the entropy. 

 

2.2.1 Method 
 

Let X be a discrete random variable taking the value { }∈ia A,C,G,T  with the probability 

( ) ( )= =i iP a Pr X a . The entropy H(X) of the discrete random variable X can be defined, in a simple 

approach, by the measure of the average information quantity associated with this variable X, i.e. 

=

= −∑
4

i 2 i
i 1

H(X) P(a )log P(a )  

The entropy H(X) defined for the words of length 1 (nucleotides) is extended for words =i 1 nw a ...a , 

{ }∈ ni 1,...,4 , of a given length n as follows 

=

= −∑
n4

n i 2 i
i 1

H P(w )log P(w )  

where iP(w )  is the occurrence probability of the word iw . Note =1H H(X) . 

As the protein genes are read in the reading frame, the entropy nH  defined for the words of length n is 

extended to the entropy n,fH , { }∈f 0,1,2 , computed from the occurrence probabilities f iP (w )  of the word 

=i 1 nw a ...a  in the frame f, as follows 

 

=

= −∑
n4

n,f f i 2 f i
i 1

H P (w )log P (w )  

Notes: 

(i) For the word iw  of length 1 (n=1), there is the obvious relation 

+=f i f 1 iP (w ) p (w )    (11) 

where +f 1 ip (w )  is the probability of a base at the position { }+ ∈(f 1) 1,2,3  in the NF method. 

(ii) 3,0H  can be considered as a classical entropy H(Y) for the discrete random variable Y taking the 64 

values in {AAA,...,TTT} in reading frame. 

 

When the probabilities follow a random discrete uniform law, i.e. all the probabilities are equal, then 

the maxima of the entropy functions nH  and n,fH  are reached and are equal to = =∑
n4

n n
2 2n

1

1 log 4 log 4 2n
4

 

bits (Cover & Thomas, 1991). 

 

Classically, an entropy function is expressed in bits per nucleotide with a maximal value equal to 2 

corresponding to an uniform random distribution (Loewenstern & Yianilos,1999). Then, the introduced 

functions are normalised as follows: 
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=�
n nH H n    (12) 

=�
n,f n,fH H n    (13) 

 

The two statistical methods presented in Section 1, the Trinucleotide Frequency (TF) method (Arquès 

& Michel, 1996) and the Nucleotide Frequency (NF) method (Koch & Lehmann, 1997), allow to construct 

circular codes from data observed in the coding genes. The circular codes constructed by both methods, are 

sets of trinucleotides in frame 0. The construction of these different codes are based on the occurrence 

probabilities of the triplets in frame 0. 

The TF method directly uses these probabilities. 

In contrast, the NF method assumes the independence between successive bases for using the occurrence 

probabilities of the bases at the different positions in a trinucleotide (triplet) observed in frame 0. 

The computation of the entropies associated with the 2 models of probabilities will measure the real 

influence of the hypothesis of non-correlation between successive bases. 

 

The NF method is based on the occurrence probability θip ( )  of a given base { }θ∈ A,C,G,T  at 

position { }∈i 1,2,3  in a trinucleotide (triplet) observed in frame 0. By assuming the non-correlation between 

successive bases, the occurrence probability αβγ0P ( )  of the trinucleotide αβγ  in frame 0, is then deduced 

by the product of individual probabilities which is equal by using the relation (11) to 

αβγ = α β γ = α β γ0 0 1 2 1 2 3P ( ) P ( )P ( )P ( ) p ( )p ( )p ( )  

Then, the entropy NFH  associated to these probabilities is 

( )
α β γ∈

= − α β γ α β γ∑NF 1 2 3 2 1 2 3
, , {A,C,G,T}

H p ( )p ( )p ( )log p ( )p ( )p ( )  

By assuming the non-correlation between successive bases and by using the relation (11), basic results 

lead to the entropy NFH  equal to (Cover & Thomas, 1991) 

( )
α β γ∈

= θ∈

= =

=

= − α β γ α β γ

= − θ θ

= −

=

∑

∑ ∑

∑∑

∑

NF 1 2 3 2 1 2 3
, , {A,C,G,T}

3

i 2 i
i 1 {A,C,G,T}

2 4

f j 2 f j
f 0 j 1

2

1,f
f 0

H p ( )p ( )p ( )log p ( )p ( )p ( )

p ( )log p ( )

P (w )log P (w )

H

 

 

The TF method is based on the observed occurrence probabilities of the trinucleotides in the frame 0. 

Therefore, its entropy TFH
 
is equal to 

α β γ∈

= − αβγ αβγ =∑TF 0 2 0 3,0
, , {A,C,G,T}

H P ( )log P ( ) H  

 

In order to express the entropies 3H , NFH  and TFH  in bits per nucleotide, the functions are normalized 

according to (12) and (13) 

=�
3 3H H 3  
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=�
NF NFH H 3  

=�
TF TFH H 3  

Remark: 

With gene populations containing several millions of nucleotides (e.g. Arquès & Michel, 1996; Koch & 

Lehmann, 1997), the computed probabilities are stable (law of large numbers). Therefore, the values 

obtained here from such probabilities lead to a precise approximation of the entropy functions. 

 

2.2.2 Results 
 

The values of these entropies in the prokaryotic protein genes are presented in the Table 4. 

The values of 1H  (resp. � 3H ) are associated with the nucleotides (resp. the trinucleotides) without 

considering the existence of the reading frame in the prokaryotic protein genes. As expected, these values 

are closed to 2 representing the random situation. The value � 3H  (1.984 bit per nucleotide) is slightly less 

than the value of 1H  (1.998 bit per nucleotide), showing that the basic element of information in the protein 

genes, is the trinucleotide and not the nucleotide. 

The value of � TFH  (1.918 bit per nucleotide) associated with the TF method, is significantly lower than the 

value of � NFH  (1.965 bit per nucleotide) associated with the NF method. The � TFH  value can be compared 

with the classical estimate of entropy of coding genes which is about 1.92 (Loewenstern & Yianilos,1999). 

This value of 1.92 can be improved by considering particular sequences or by using specific algorithms as 

shown in Table 4 of Loewenstern & Yianilos (1999) for a non-redundant collection of 490 human genes. 

The improvement of the estimate of the entropy is not the aim of this paper. But, the fact that the value of 
�

TFH  corresponds to the classical estimate, implies that the probability model used in the TF method can be 

considered as a correct representation of the structure of the coding genes. 

In contrast, the value of �
NFH  differs significantly from the classical estimate. The hypothesis of 

independence between successive bases has then a strong effect on the values of the entropies. Therefore, 

the probability model used in the NF method does not reveal neither the internal structure of the coding 

genes nor the occurrence probabilities of the triplets in frame 0. 

 

3 DISCUSSION 
 

Koch & Lehmann (1997) have proposed a probabilistic model for constructing the circular code 

observed in the protein genes. Their method (called here Nucleotide Frequency (NF) method) is based on 

the nucleotide frequencies with a hypothesis of absence of correlation between successive bases on a DNA 

strand for deducing a circular code from the product of the 3 occurrence probabilities of nucleotides in the 

positions of trinucleotide read in frame 0. It allows a simple construction of some particular circular codes but 

reveals several limits for constructing the circular code associated with protein genes: 

(i) Several self-complementary circular codes, but not an unique one, are generated by the NF method from 

the observed probabilities (Section 2.1.1). 

(ii) The self-complementary circular code 0X  observed in the in the protein genes of both eukaryotes and 

prokaryotes cannot be generated by the NF method (Section 2.1.2). 
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(iii) 88 among 216 self-complementary circular codes can be generated by the NF method (Section 2.1.3). 

They are listed in Table 3. 

(iv) The hypothesis used in the NF method of no correlation between successive bases in the protein genes, 

is not verified (Section 2.2.2). Indeed, this hypothesis has been justified by computing the entropy with 

occurrence probabilities of words of length 1 to 6 (Koch & Lehmann, 1997). However, any probability model 

can produced a value of entropy. The choice of the function for revealing the genetic information in the 

sense of the information theory defined by Shannon (1949), is very important as the value of the entropy 

strongly varies among the functions used. Several examples of different functions estimating the value of the 

entropy are presented in Chatzidimitriou-Dreismamm et al (1996), Lio et al (1996), Loewenstern & Yianilos 

(1999), etc. In order to evaluate the hypothesis of non-correlation between successive bases, 2 estimates of 

the entropy are computed here. The first estimate associated with the TF method, is based on the 64 

occurrence probabilities of triplets in frame 0. The entropy value � TFH  associated with these probabilities, is 

equal to 1.918 bit per nucleotide and is similar to the classical estimate (1.92) of the entropy of coding genes 

(Loewenstern & Yianilos,1999). The second estimate associated with the NF method, is based on the 12 

occurrence probabilities of nucleotides in the 3 triplet sites. These nucleotide probabilities with the 

hypothesis of non-correlation between successive bases, allow to deduce the occurrence probabilities of 

triplets in frame 0 more simply (with 12 values compared to 64 ones, but with a probability hypothesis). 

However, its entropy value � NFH  is equal to 1.965 bit per nucleotide and significantly differs from � TFH . 

Therefore, the hypothesis of non-correlation between successive bases is not verified. 

 

4 CONCLUSION 
 

The method introduced by Koch & Lehmann (1997) is a new approach for constructing circular codes. 

This NF method constructs in a simple way a sub-set of circular codes which is included in the set of circular 

codes generated by the flower automaton method. The NF method has an obvious interest in the field of the 

theory of codes. In this paper, some new results are presented in this respect, in particular the number of 

codes generated by this NF method and some patterns of code words excluded by the NF method. 

 

However, the main purpose of the NF method was to explain the circular code 0X  identified in the 

protein genes of both eukaryotes and prokaryotes (Arquès & Michel, 1996). Several results were presented 

here concerning the relations between the NF method and the code 0X . The NF method does not generate 

a unique self-complementary circular code. Futhermore, it cannot generate the code 0X . Finally, the 

hypothesis of non-correlation between successive bases at the basis of the NF method, is rejected as the 

different computations of the entropy clearly show that the probabilities used by the NF method does not 

respect the internal structure of the coding genes. In conclusion, the NF method is not an appropriate model 

for explaining the circular code 0X . 
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0T : AAA AAC AAT ACC ATC ATT CAG CTC CTG GAA GAC GAG GAT GCCGGC GGT GTA GTC GTT TAC TTC TTT

1T : AAG ACA ACG ACT AGCAGG ATA ATG CCA CCC CCGGCGGTG TAG TCA TCC TCG TCT TGC TTA TTG  

2T : AGA AGT CAA CAC CAT CCT CGA CGC CGG CGT CTA CTT GCA GCT GGAGGG TAA TAT TGA TGG TGT  

Table 1a List per frame and in lexicographical order of the trinucleotides of the complementary circular code 
identified in protein coding genes of eukaryotes and prokaryotes (Arquès & Michel, 1996). Three subsets of 
trinucleotides can be identified: { }0 0T X AAA,TTT= ∪ in frame 0, { }1 1T X CCC= ∪  in frame 1 and 

{ }2 2T X GGG= ∪  in frame 2. The 3 sets 0X , 1X  and 2X  of 20 trinucleotides are maximal circular codes. 
 

 

 

 

 

0X : AAC AAT ACC ATC ATT CAG CTC CTG GAA GAC GAG GAT GCC GGC GGT GTA GTC GTT TAC TTC

1X : ACA ATA CCA TCA TTA AGC TCC TGC AAG ACG AGG ATG CCG GCG GTG TAG TCG TTG ACT TCT

2X : CAA TAA CAC CAT TAT GCA CCT GCT AGA CGA GGA TGA CGC CGG TGG AGT CGT TGT CTA CTT

Table 1b Circularity property with the 3 circular codes 0X , 1X  and 2X  of 20 trinucleotides identified in 
protein coding genes of eukaryotes and prokaryotes (Table 1a). 
 

 

 

 

 

0T : AAA AAC AAT ACC ATC CAG CTC GAA GAC GCC GTA           

0T : TTT GTT ATT GGT GAT CTG GAG TTC GTC GGC TAC           

1T : AAG ACA ACG ACT AGC AGG ATA ATG CCA CCC CCG GCG GTG TAG TCA TCC TCG TCT TGC TTA TTG

2T : CTT TGT CGT AGT GCT CCT TAT CAT TGG GGGCGG CGC CAC CTA TGA GGA CGA AGA GCA TAA CAA

Table 1c Complementarity property with the 3 circular codes 0X , 1X  and 2X  of 20 trinucleotides identified in 
protein coding genes of eukaryotes and prokaryotes (Table 1a). This property is also verified with 0T  (AAA 
and TTT) and, 1T  and 2T  (CCC and GGG). 
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Base θ  θ1p ( )  θ2p ( )  θ3p ( )  

A 0.276 0.315 0.222 

T 0.166 0.285 0.268 

C 0.204 0.228 0.268 

G 0.354 0.172 0.242 

Table 2a Nucleotide frequencies θip ( )  at position 
{ }∈i 1,2,3  of the reading frame for the prokaryotes (Koch 

& Lehmann, 1997, Table 1). 
 

 

 

 

 

Circular codes p1(A) p1(C) p1(G) p1(T) p2(A) p2(C)
AAC AAT ACC AGC ATC ATT CTC GAA GAC GAG GAT GCC GCTGGCGGTGTAGTCGTTTACTTC 0.276 0.204 0.354 0.166 0.285 0.215
AAC AAG AAT ATC ATT CAC CAG CTC CTG CTT GAC GAG GATGCCGGCGTAGTCGTGGTTTAC 0.268 0.242 0.268 0.222 0.285 0.215
AAC AAG AAT AGC ATC ATT CAC CTC CTT GAC GAG GAT GCCGCTGGCGTAGTCGTGGTTTAC 0.272 0.223 0.311 0.194 0.300 0.200

Table 2b Three self-complementary circular codes generated by the Nucleotide Frequency method (NF method) 
with the frequencies of Table 2a modified according to the relation (3): =1 3p (A) p (T) , =1 3p (C) p (G) , =1 3p (G) p (C) , 

=1 3p (T) p (A) , =2 2p (A) p (T)  and =2 2p (C) p (G) . 
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Circular codes p1(A) p1(C) p1(G) p1(T) p2(A) p2(C)
ACA AGA CCA CGA GCA GCC GGA GGC GTA TAA TAC TCA TCC TCG TCT TGA TGC TGG TGT TTA 0.06 0.06 0.12 0.76 0.06 0.44
ACA CCA CGA GAA GCA GCC GGA GGC GTA TAA TAC TCA TCC TCG TGA TGC TGG TGT TTA TTC 0.06 0.06 0.12 0.76 0.18 0.32
CAA CCA CGA GAA GCA GCC GGA GGC GTA TAA TAC TCA TCC TCG TGA TGC TGG TTA TTC TTG 0.06 0.06 0.12 0.76 0.30 0.20
CAA CCA GAA GAC GCA GCC GGA GGC GTA GTC TAA TAC TCA TCC TGA TGC TGG TTA TTC TTG 0.06 0.06 0.12 0.76 0.42 0.08
CAA CAC CTC GAA GAC GAG GCA GCC GGC GTA GTC GTG TAA TAC TCA TGA TGC TTA TTC TTG 0.06 0.06 0.12 0.76 0.48 0.02
CAA CAC GAA GAC GCA GCC GGA GGC GTA GTC GTG TAA TAC TCA TCC TGA TGC TTA TTC TTG 0.06 0.06 0.18 0.70 0.42 0.08
ACA CCA GAA GAC GCA GCC GGA GGC GTA GTC TAA TAC TCA TCC TGA TGC TGG TGT TTA TTC 0.06 0.06 0.24 0.64 0.24 0.26
ATC CAA CAC CTC GAA GAC GAG GAT GCA GCC GGC GTA GTC GTG TAA TAC TGC TTA TTC TTG 0.06 0.06 0.30 0.58 0.48 0.02
ACA ACC GAA GAC GCA GCC GGA GGC GGT GTA GTC TAA TAC TCA TCC TGA TGC TGT TTA TTC 0.06 0.06 0.48 0.40 0.06 0.44
AAC ACC GAA GAC GCA GCC GGA GGC GGT GTA GTC GTT TAA TAC TCA TCC TGA TGC TTA TTC 0.06 0.06 0.48 0.40 0.24 0.26
AAC CAC GAA GAC GCA GCC GGA GGC GTA GTC GTG GTT TAA TAC TCA TCC TGA TGC TTA TTC 0.06 0.06 0.48 0.40 0.30 0.20
AAC ATC CAC CTC GAA GAC GAG GAT GCA GCC GGC GTA GTC GTG GTT TAA TAC TGC TTA TTC 0.06 0.06 0.48 0.40 0.48 0.02
AAC ATC CAC GAA GAC GAT GCA GCC GGA GGC GTA GTC GTG GTT TAA TAC TCC TGC TTA TTC 0.06 0.06 0.54 0.34 0.42 0.08
AAC ACC ATC GAA GAC GAT GCA GCC GGA GGC GGT GTA GTC GTT TAA TAC TCC TGC TTA TTC 0.06 0.06 0.72 0.16 0.24 0.26
AAC ATC CAC CAG CTC CTG GAA GAC GAG GAT GCC GGC GTA GTC GTG GTT TAA TAC TTA TTC 0.06 0.06 0.78 0.10 0.48 0.02
AAC AAT ACC AGC ATC ATT GAA GAC GAT GCC GCT GGA GGC GGT GTA GTC GTT TAC TCC TTC 0.06 0.06 0.84 0.04 0.06 0.44
AAC AAT ACC AGC ATC ATT CTC GAA GAC GAG GAT GCC GCT GGC GGT GTA GTC GTT TAC TTC 0.06 0.06 0.84 0.04 0.24 0.26
AAC AAT AGC ATC ATT CAC CTC GAA GAC GAG GAT GCC GCT GGC GTA GTC GTG GTT TAC TTC 0.06 0.06 0.84 0.04 0.30 0.20
AAC AAT ATC ATT CAC CAG CTC CTG GAA GAC GAG GAT GCC GGC GTA GTC GTG GTT TAC TTC 0.06 0.06 0.84 0.04 0.48 0.02
ACA AGA CCA CCG CGA CGG CTA GCA GGA TAA TAG TCA TCC TCG TCT TGA TGC TGG TGT TTA 0.06 0.12 0.06 0.76 0.06 0.44
AGA CAA CCA CCG CGA CGG CTA GCA GGA TAA TAG TCA TCC TCG TCT TGA TGC TGG TTA TTG 0.06 0.12 0.06 0.76 0.18 0.32
CAA CCA CCG CGA CGG CTA GAA GCA GGA TAA TAG TCA TCC TCG TGA TGC TGG TTA TTC TTG 0.06 0.12 0.06 0.76 0.30 0.20
CAA CAG CCA CCG CGA CGG CTA CTG GAA GGA TAA TAG TCA TCC TCG TGA TGG TTA TTC TTG 0.06 0.12 0.06 0.76 0.42 0.08
CAA CAC CAG CCG CGA CGG CTA CTC CTG GAA GAG GTG TAA TAG TCA TCG TGA TTA TTC TTG 0.06 0.12 0.06 0.76 0.48 0.02
CAA CAC CAG CTC CTG GAA GAC GAG GCC GGC GTA GTC GTG TAA TAC TCA TGA TTA TTC TTG 0.06 0.12 0.18 0.64 0.48 0.02
ATC CAA CAC CAG CTC CTG GAA GAC GAG GAT GCC GGC GTA GTC GTG TAA TAC TTA TTC TTG 0.06 0.12 0.24 0.58 0.48 0.02
CAA CAG CCA CCG CGA CGG CTA CTC CTG GAA GAG TAA TAG TCA TCG TGA TGG TTA TTC TTG 0.06 0.18 0.06 0.70 0.42 0.08
CAA CAC CAG CCG CGG CTA CTC CTG GAA GAC GAG GTC GTG TAA TAG TCA TGA TTA TTC TTG 0.06 0.18 0.12 0.64 0.48 0.02
AGA CAA CAG CCA CCG CGA CGG CTA CTG GGA TAA TAG TCA TCC TCG TCT TGA TGG TTA TTG 0.06 0.24 0.06 0.64 0.24 0.26
ATG CAA CAC CAG CAT CCG CGG CTA CTC CTG GAA GAC GAG GTC GTG TAA TAG TTA TTC TTG 0.06 0.24 0.12 0.58 0.48 0.02
AAC AAT ACC ACT AGC AGT ATC ATT GAA GAC GAT GCC GCT GGA GGC GGT GTC GTT TCC TTC 0.06 0.24 0.66 0.04 0.06 0.44
ATG CAA CAC CAG CAT CCG CGA CGG CTA CTC CTG GAA GAG GTG TAA TAG TCG TTA TTC TTG 0.06 0.30 0.06 0.58 0.48 0.02
AAC AAT ACC ACT AGC AGT ATC ATT CTC GAA GAC GAG GAT GCC GCT GGC GGT GTC GTT TTC 0.06 0.30 0.60 0.04 0.06 0.44
AAC AAG AAT ACC ACT AGC AGT ATC ATT CTC CTT GAC GAG GAT GCC GCT GGC GGT GTC GTT 0.06 0.36 0.54 0.04 0.06 0.44
AAC AAG AAT ATC ATT CAC CAG CTC CTG CTT GAC GAG GAT GCC GGC GTA GTC GTG GTT TAC 0.06 0.36 0.54 0.04 0.12 0.38
AGA AGG CAA CAG CCA CCG CCT CGA CGG CTA CTG TAA TAG TCA TCG TCT TGA TGG TTA TTG 0.06 0.48 0.06 0.40 0.06 0.44
AAG AGG CAA CAG CCA CCG CCT CGA CGG CTA CTG CTT TAA TAG TCA TCG TGA TGG TTA TTG 0.06 0.48 0.06 0.40 0.24 0.26
AAG CAA CAG CCA CCG CGA CGG CTA CTC CTG CTT GAG TAA TAG TCA TCG TGA TGG TTA TTG 0.06 0.48 0.06 0.40 0.30 0.20
AAG ATG CAA CAC CAG CAT CCG CGA CGG CTA CTC CTG CTT GAG GTG TAA TAG TCG TTA TTG 0.06 0.48 0.06 0.40 0.48 0.02
AAC AAG AAT ACG ACT AGG AGT ATG ATT CAC CAG CAT CCG CCT CGG CGT CTG CTT GTG GTT 0.06 0.48 0.42 0.04 0.06 0.44
AAC AAG AAT ATG ATT CAC CAG CAT CCG CGG CTA CTC CTG CTT GAC GAG GTC GTG GTT TAG 0.06 0.48 0.42 0.04 0.12 0.38
AAG ATG CAA CAG CAT CCA CCG CGA CGG CTA CTC CTG CTT GAG TAA TAG TCG TGG TTA TTG 0.06 0.54 0.06 0.34 0.42 0.08
AAG ATG CAA CAC CAG CAT CCG CGG CTA CTC CTG CTT GAC GAG GTC GTG TAA TAG TTA TTG 0.06 0.54 0.30 0.10 0.24 0.26
AAG AAT ACG ACT AGG AGT ATG ATT CAA CAC CAG CAT CCG CCT CGG CGT CTG CTT GTG TTG 0.06 0.60 0.30 0.04 0.06 0.44
AAG AAT ACG ATG ATT CAA CAC CAG CAT CCG CGG CGT CTA CTC CTG CTT GAG GTG TAG TTG 0.06 0.60 0.30 0.04 0.12 0.38
AAG AAT ATG ATT CAA CAC CAG CAT CCG CGG CTA CTC CTG CTT GAC GAG GTC GTG TAG TTG 0.06 0.60 0.30 0.04 0.18 0.32
AAG AGG ATG CAA CAG CAT CCA CCG CCT CGA CGG CTA CTG CTT TAA TAG TCG TGG TTA TTG 0.06 0.66 0.18 0.10 0.12 0.38
AAG AAT ACG ACT AGG AGT ATG ATT CAA CAG CAT CCA CCG CCT CGG CGT CTG CTT TGG TTG 0.06 0.66 0.24 0.04 0.06 0.44
AAG AAT ACG AGG ATG ATT CAA CAG CAT CCA CCG CCT CGG CGT CTA CTG CTT TAG TGG TTG 0.06 0.72 0.18 0.04 0.06 0.44
AAG AAT ACG AGG ATG ATT CAA CAC CAG CAT CCG CCT CGG CGT CTA CTG CTT GTG TAG TTG 0.06 0.72 0.18 0.04 0.12 0.38
ACA ACT AGA AGT CCA CGA GCA GCC GGA GGC TAA TCA TCC TCG TCT TGA TGC TGG TGT TTA 0.12 0.06 0.12 0.70 0.06 0.44
ACA ACC AGA CGA GCA GCC GGA GGC GGT GTA TAA TAC TCA TCC TCG TCT TGA TGC TGT TTA 0.12 0.06 0.30 0.52 0.06 0.44
ACA ACC AGA GAC GCA GCC GGA GGC GGT GTA GTC TAA TAC TCA TCC TCT TGA TGC TGT TTA 0.12 0.06 0.36 0.46 0.12 0.38
ACA ACC ACT AGA AGT GAC GCA GCC GGA GGC GGT GTC TAA TCA TCC TCT TGA TGC TGT TTA 0.12 0.06 0.66 0.16 0.06 0.44
AAT ACA ACC ACT AGA AGC AGT ATC ATT GAC GAT GCC GCT GGA GGC GGT GTC TCC TCT TGT 0.12 0.06 0.72 0.10 0.06 0.44
AAC AAT ACC ACT AGA AGC AGT ATC ATT GAC GAT GCC GCT GGA GGC GGT GTC GTT TCC TCT 0.12 0.06 0.78 0.04 0.06 0.44
ACA ACT AGA AGT CCA CCG CGA CGG GCA GGA TAA TCA TCC TCG TCT TGA TGC TGG TGT TTA 0.12 0.12 0.06 0.70 0.06 0.44
ACA ACC ACT AGA AGT CGA GCA GCC GGA GGC GGT TAA TCA TCC TCG TCT TGA TGC TGT TTA 0.12 0.18 0.48 0.22 0.06 0.44
AAT ACA ACC ACT AGA AGC AGT ATT GAC GCC GCT GGA GGC GGT GTC TCA TCC TCT TGA TGT 0.12 0.18 0.60 0.10 0.06 0.44
AAC AAT ACC ACT AGA AGC AGG AGT ATC ATT CCT GAC GAT GCC GCT GGC GGT GTC GTT TCT 0.12 0.24 0.60 0.04 0.06 0.44
AAC AAG AAT ACT AGC AGT ATC ATT CAC CTC CTT GAC GAG GAT GCC GCT GGC GTC GTG GTT 0.12 0.24 0.60 0.04 0.18 0.32
AAC AAG AAT AGC ATC ATT CAC CTC CTT GAC GAG GAT GCC GCT GGC GTA GTC GTG GTT TAC 0.12 0.24 0.60 0.04 0.24 0.26
ACA AGA AGG CCA CCG CCT CGA CGG CTA GCA TAA TAG TCA TCG TCT TGA TGC TGG TGT TTA 0.12 0.30 0.06 0.52 0.06 0.44
AAT ACA ACC ACG ACT AGA AGC AGT ATT CGT GCC GCT GGA GGC GGT TCA TCC TCT TGA TGT 0.12 0.30 0.48 0.10 0.06 0.44
AAC AAG AAT ACC ACT AGC AGG AGT ATC ATT CCT CTT GAC GAT GCC GCT GGC GGT GTC GTT 0.12 0.30 0.54 0.04 0.06 0.44
ACA AGA AGG CAG CCA CCG CCT CGA CGG CTA CTG TAA TAG TCA TCG TCT TGA TGG TGT TTA 0.12 0.36 0.06 0.46 0.12 0.38
AAT ACA ACC ACG ACT AGA AGC AGG AGT ATT CCT CGT GCC GCT GGC GGT TCA TCT TGA TGT 0.12 0.36 0.42 0.10 0.06 0.44
AAC AAG AAT ACC ACG ACT AGC AGG AGT ATC ATT CCT CGT CTT GAT GCC GCT GGC GGT GTT 0.12 0.36 0.48 0.04 0.06 0.44
AAC AAG AAT ACT AGT ATC ATT CAC CAG CTC CTG CTT GAC GAG GAT GCC GGC GTC GTG GTT 0.12 0.36 0.48 0.04 0.18 0.32
ACA ACT AGA AGG AGT CCA CCG CCT CGA CGG GCA TAA TCA TCG TCT TGA TGC TGG TGT TTA 0.12 0.42 0.30 0.16 0.06 0.44
AAT ACA ACC ACG ACT AGA AGC AGG AGT ATT CCG CCT CGG CGT GCT GGT TCA TCT TGA TGT 0.12 0.42 0.36 0.10 0.06 0.44
AAT ACA ACG ACT AGA AGC AGG AGT ATT CCA CCG CCT CGG CGT GCT TCA TCT TGA TGG TGT 0.12 0.48 0.30 0.10 0.06 0.44
AAC AAG AAT ACC ACG ACT AGC AGG AGT ATG ATT CAT CCG CCT CGG CGT CTT GCT GGT GTT 0.12 0.48 0.36 0.04 0.06 0.44
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AAC AAG AAT ACT AGT ATG ATT CAC CAG CAT CCG CGG CTC CTG CTT GAC GAG GTC GTG GTT 0.12 0.48 0.36 0.04 0.18 0.32
ACA ACT AGA AGG AGT CAG CCA CCG CCT CGA CGG CTG TAA TCA TCG TCT TGA TGG TGT TTA 0.12 0.54 0.18 0.16 0.06 0.44
AAT ACA ACG ACT AGA AGG AGT ATT CAG CCA CCG CCT CGG CGT CTG TCA TCT TGA TGG TGT 0.12 0.54 0.24 0.10 0.06 0.44
AAC AAG AAT ACC ACG ACT AGG AGT ATG ATT CAG CAT CCG CCT CGG CGT CTG CTT GGT GTT 0.12 0.54 0.30 0.04 0.06 0.44
AAC AAG AAT ACG ACT AGT ATG ATT CAC CAG CAT CCG CGG CGT CTC CTG CTT GAG GTG GTT 0.12 0.54 0.30 0.04 0.18 0.32
AAG AAT ACA ACC ACG ACT AGG AGT ATG ATT CAG CAT CCG CCT CGG CGT CTG CTT GGT TGT 0.12 0.60 0.24 0.04 0.06 0.44
AAC AAG AAT ACG ATG ATT CAC CAG CAT CCG CGG CGT CTA CTC CTG CTT GAG GTG GTT TAG 0.12 0.60 0.24 0.04 0.24 0.26
AAT ACA ACG ACT AGA AGG AGT ATG ATT CAG CAT CCA CCG CCT CGG CGT CTG TCT TGG TGT 0.12 0.66 0.12 0.10 0.06 0.44
AAG AAT ACA ACG ACT AGG AGT ATG ATT CAG CAT CCA CCG CCT CGG CGT CTG CTT TGG TGT 0.12 0.66 0.18 0.04 0.06 0.44
AAT ACA ACC ACG ACT AGA AGC AGT ATC ATT CGT GAT GCC GCT GGA GGC GGT TCC TCT TGT 0.18 0.24 0.48 0.10 0.06 0.44
AAC AAT ACC ACG ACT AGA AGC AGG AGT ATC ATT CCT CGT GAT GCC GCT GGC GGT GTT TCT 0.18 0.24 0.54 0.04 0.06 0.44
AAT ACA ACC ACG ACT AGA AGC AGG AGT ATC ATT CCT CGT GAT GCC GCT GGC GGT TCT TGT 0.18 0.30 0.42 0.10 0.06 0.44
AAT ACA ACC ACG ACT AGA AGC AGG AGT ATG ATT CAT CCG CCT CGG CGT GCT GGT TCT TGT 0.18 0.42 0.30 0.10 0.06 0.44
AAT ACA ACG ACT AGA AGC AGG AGT ATG ATT CAT CCA CCG CCT CGG CGT GCT TCT TGG TGT 0.18 0.48 0.24 0.10 0.06 0.44
AAG AAT ACA ACC ACG ACT AGC AGG AGT ATG ATT CAT CCG CCT CGG CGT CTT GCT GGT TGT 0.18 0.54 0.24 0.04 0.06 0.44

Table 3 List of the 88 self-complementary circular codes generated by the Nucleotide Frequency method (NF 
method) according to the 6 probabilities =1 3p (A) p (T) , =1 3p (C) p (G) , =1 3p (G) p (C) , =1 3p (T) p (A) , =2 2p (A) p (T)  
and =2 2p (C) p (G) . 

 

 

 

 

 

 Entropy in the frame 0 modulo 3 Classical entropy nH  
Nucleotide (n=1) �

NFH =1.965 1H =1.998 

Trinucleotide (n=3) �
TFH =1.918 �

3H =1.984 
Table 4 Computation of different types of entropies (bit per nucleotide) from the 
occurrence frequencies of the 64 trinucleotides in the frame 0 modulo 3 and in the 
3 frames (average frame) of prokaryotic protein coding genes (13686 sequences, 
4708758 trinucleotides; data from Arquès & Michel, 1996, p. 49). 

 


