2 research outputs found

    Development of a spectral unmixing procedure using a genetic algorithm and spectral shape

    Get PDF
    xvi, 85 leaves : ill. (chiefly col.) ; 29 cmSpectral unmixing produces spatial abundance maps of endmembers or ‘pure’ materials using sub-pixel scale decomposition. It is particularly well suited to extracting a greater portion of the rich information content in hyperspectral data in support of real-world issues such as mineral exploration, resource management, agriculture and food security, pollution detection, and climate change. However, illumination or shading effects, signature variability, and the noise are problematic. The Least Square (LS) based spectral unmixing technique such as Non-Negative Sum Less or Equal to One (NNSLO) depends on “shade” endmembers to deal with the amplitude errors. Furthermore, the LS-based method does not consider amplitude errors in abundance constraint calculations, thus, often leads to abundance errors. The Spectral Angle Constraint (SAC) reduces the amplitude errors, but the abundance errors remain because of using fully constrained condition. In this study, a Genetic Algorithm (GA) was adapted to resolve these issues using a series of iterative computations based on the Darwinian strategy of ‘survival of the fittest’ to improve the accuracy of abundance estimates. The developed GA uses a Spectral Angle Mapper (SAM) based fitness function to calculate abundances by satisfying a SAC-based weakly constrained condition. This was validated using two hyperspectral data sets: (i) a simulated hyperspectral dataset with embedded noise and illumination effects and (ii) AVIRIS data acquired over Cuprite, Nevada, USA. Results showed that the new GA-based unmixing method improved the abundance estimation accuracies and was less sensitive to illumination effects and noise compared to existing spectral unmixing methods, such as the SAC and NNSLO. In case of synthetic data, the GA increased the average index of agreement between true and estimated abundances by 19.83% and 30.10% compared to the SAC and the NNSLO, respectively. Furthermore, in case of real data, GA improved the overall accuracy by 43.1% and 9.4% compared to the SAC and NNSLO, respectively

    Méthodes de séparation aveugle de sources et application à la télédétection spatiale

    Get PDF
    Cette thèse concerne la séparation aveugle de sources, qui consiste à estimer un ensemble de signaux sources inconnus à partir d'un ensemble de signaux observés qui sont des mélanges à paramètres inconnus de ces signaux sources. C'est dans ce cadre que le travail de recherche de cette thèse concerne le développement et l'utilisation de méthodes linéaires innovantes de séparation de sources pour des applications en imagerie de télédétection spatiale. Des méthodes de séparation de sources sont utilisées pour prétraiter une image multispectrale en vue d'une classification supervisée de ses pixels. Deux nouvelles méthodes hybrides non-supervisées, baptisées 2D-Corr-NLS et 2D-Corr-NMF, sont proposées pour l'extraction de cartes d'abondances à partir d'une image multispectrale contenant des pixels purs. Ces deux méthodes combinent l'analyse en composantes parcimonieuses, le clustering et les méthodes basées sur les contraintes de non-négativité. Une nouvelle méthode non-supervisée, baptisée 2D-VM, est proposée pour l'extraction de spectres à partir d'une image hyperspectrale contenant des pixels purs. Cette méthode est basée sur l'analyse en composantes parcimonieuses. Enfin, une nouvelle méthode est proposée pour l'extraction de spectres à partir d'une image hyperspectrale ne contenant pas de pixels purs, combinée avec une image multispectrale, de très haute résolution spatiale, contenant des pixels purs. Cette méthode est fondée sur la factorisation en matrices non-négatives couplée avec les moindres carrés non-négatifs. Comparées à des méthodes de la littérature, d'excellents résultats sont obtenus par les approches méthodologiques proposées.This thesis concerns the blind source separation problem, which consists in estimating a set of unknown source signals from a set of observed signals which are mixtures of these source signals, with unknown mixing coefficients. In this thesis, we develop and use innovative linear source separation methods for applications in remote sensing imagery. Source separation methods are used and applied in order to preprocess a multispectral image for a supervised classification of this image. Two new unsupervised methods, called 2D-Corr-NLS and 2D-Corr-NMF, are proposed in order to extract abundance maps from a multispectral image with pure pixels. These methods are based on sparse component analysis, clustering and non-negativity constraints. A new unsupervised method, called 2D-VM, is proposed in order to extract endmember spectra from a hyperspectral image with pure pixels. This method is based on sparse component analysis. Also, a new method is proposed for extracting endmember spectra from a hyperspectral image without pure pixels, combined with a very high spatial resolution multispectral image with pure pixels. This method is based on non-negative matrix factorization coupled with non-negative least squares. Compared to literature methods, excellent results are obtained by the proposed methodological approaches
    corecore