124,753 research outputs found

    The Construction of Curves and Surfaces Using Numerical Optimization Techniques

    Get PDF
    Numerical optimization techniques are playing an increasing role in curve and surface construction. Often difficult problems in curve and surface construction, especially when some aspect of shape control is involved, can be phrased as a constrained optimization problem. Four such classes of problems are explored: parametric curve fitting with non-linear shape constraints; explicit surface fitting with linear shape constraints; surface fitting to scattered data giving rise to ill-posed problems; finally, variable knot problems. In each of these problems there is a nonlinear aspect: either the shape of the curve or surface is important for manufacturing or engineering reasons or the shape affects the convergence of numerical algorithms which use the curve or surface or the placement of knots affects the accuracy of the fits. In all cases the class of functions used is that of parametric spline curves and tensor or direct product spline surfaces. The reason for choosing this class is that splines provide flexible models that are easily evaluated and stored. Furthermore, the B-spline representation of splines leads to convenient expressions for shape control over regions

    Anisotropic diffusion of surface normals for feature preserving surface reconstruction

    Get PDF
    Journal ArticleFor 3D surface reconstruction problems with noisy and incomplete range data measure d from complex scenes with arbitrary topologies, a low-level representation, such as level set surfaces, is used. Such surface reconstruction is typically accomplished by minimizing a weighted sum of data-model discrepancy and model smoothness terms. This paper introduces a new nonlinear model smoothness term for surface reconstruction based on variations of the surface normals. A direct solution requires solving a fourth-order partial differential equation (PDE), which is very difficult with conventional numerical techniques. Our solution is based on processing the normals separately from the surface, which allows us to separate the problem into two second-order PDEs. The proposed method can smooth complex, noisy surfaces, while preserving sharp, geometric features, and it is a natural generalization of edge-preserving methods in image processing, such as anisotropic diffusion

    Anisotropic diffusion of surface normals for feature preserving surface reconstruction

    Get PDF
    technical reportFor 3D surface reconstruction problems with noisy and incomplete range data measured from complex scenes with arbitrary topologies, a low-level representation, such as level set surfaces, is used. Such surface reconstruction is typically accomplished by minimizing a weighted sum of data-model discrepancy and model smoothness terms. This paper introduces a new nonlinear model smoothness term for surface reconstruction based on variations of the surface normals. A direct solution requires solving a fourth-order partial differential equation (PDE), which is very difficult with conventional numerical techniques. Our solution is based on processing the normals separately from the surface, which allows us to separate the problem into two second-order PDEs. The proposed method can smooth complex, noisy surfaces, while preserving sharp, geometric features, and it is a natural generalization of edge-preserving methods in image processing, such as anisotropic diffusion

    Transient Response Dynamic Module Modifications to Include Static and Kinetic Friction Effects

    Get PDF
    A methodology that supports forced transient response dynamic solutions when both static and kinetic friction effects are included in a structural system model is described. Modifications that support this type of nonlinear transient response solution are summarized for the transient response dynamics (TRD) NASTRAN module. An overview of specific modifications for the NASTRAN processing subroutines, INITL, TRD1C, and TRD1D, are described with further details regarding inspection of nonlinear input definitions to define the type of nonlinear solution required, along with additional initialization requirements and specific calculation subroutines to successfully solve the transient response problem. The extension of the basic NASTRAN nonlinear methodology is presented through several stages of development to the point where constraint equations and residual flexibility effects are introduced into the finite difference Newmark-Beta recurrsion formulas. Particular emphasis is placed on cost effective solutions for large finite element models such as the Space Shuttle with friction degrees of freedom between the orbiter and payloads mounted in the cargo bay. An alteration to the dynamic finite difference equations of motion is discussed, which allows one to include friction effects at reasonable cost for large structural systems such as the Space Shuttle. Data are presented to indicate the possible impact of transient friction loads to the payload designer for the Space Shuttle. Transient response solution data are also included, which compare solutions without friction forces and those with friction forces for payloads mounted in the Space Shuttle cargo bay. These data indicate that payload components can be sensitive to friction induced loads

    Information Surfaces in Systems Biology and Applications to Engineering Sustainable Agriculture

    Full text link
    Systems biology of plants offers myriad opportunities and many challenges in modeling. A number of technical challenges stem from paucity of computational methods for discovery of the most fundamental properties of complex dynamical systems. In systems engineering, eigen-mode analysis have proved to be a powerful approach. Following this philosophy, we introduce a new theory that has the benefits of eigen-mode analysis, while it allows investigation of complex dynamics prior to estimation of optimal scales and resolutions. Information Surfaces organizes the many intricate relationships among "eigen-modes" of gene networks at multiple scales and via an adaptable multi-resolution analytic approach that permits discovery of the appropriate scale and resolution for discovery of functions of genes in the model plant Arabidopsis. Applications are many, and some pertain developments of crops that sustainable agriculture requires.Comment: 24 Pages, DoCEIS 1

    Finding apparent horizons and other two-surfaces of constant expansion

    Full text link
    Apparent horizons are structures of spacelike hypersurfaces that can be determined locally in time. Closed surfaces of constant expansion (CE surfaces) are a generalisation of apparent horizons. I present an efficient method for locating CE surfaces. This method uses an explicit representation of the surface, allowing for arbitrary resolutions and, in principle, shapes. The CE surface equation is then solved as a nonlinear elliptic equation. It is reasonable to assume that CE surfaces foliate a spacelike hypersurface outside of some interior region, thus defining an invariant (but still slicing-dependent) radial coordinate. This can be used to determine gauge modes and to compare time evolutions with different gauge conditions. CE surfaces also provide an efficient way to find new apparent horizons as they appear e.g. in binary black hole simulations.Comment: 21 pages, 8 figures; two references adde
    corecore