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Abstract

For 3D surface reconstruction problems with noisy and in­
complete range data measured from complex scenes with 
arbitrary topologies, a low-level representation, such as 
level set surfaces, is used. Such surface reconstruction 
is typically accomplished by minimizing a weighted sum 
o f data-model discrepancy and model smoothness terms. 
This paper introduces a new nonlinear model smooth­
ness term fo r  surface reconstruction based on variations 
o f the surface normals. A  direct solution requires solving 
a fourth-order partial differential equation (PDE), which 
is very difficult with conventional numerical techniques. 
Our solution is based on processing the normals separately 
from the surface, which allows us to separate the problem 
into two second-order PDEs. The proposed method can 
smooth complex, noisy surfaces, while presenting sharp, 
geometric features, and it is a natural generalization o f  
edge-presen’ing methods in image processing, such as 
anisotropic diffusion.

1. Introduction

The precision o f  range m easurem ent systems, such as 
tim e-of-flight laser range tinders, has been increasing while 
their price drops. I f  com bined with a w ell-founded m ethod 
for surface reconstruction, these improvements could make 
capturing 3D shape as ubiquitous as photography. How ­
ever, significant challenges to surface reconstruction, such 
as m easurem ent noise and variations in m easurem ent den­
sity, remain. This paper addresses the problem o f preserv­
ing geom etric features, i.e. edges, corners and junctions on 
surfaces, in fu ll 3D reconstructions o f  com plex scenes from 
multiple, noisy range images. Figure 1(a) illustrates a typ­
ical range image. M easurem ent noise and occlusions (be­
tween the tile cabinet and the chair) can be observed in this 
data. F igure 1(b) illustrates the reconstruction with the pro­
posed m ethod from  a sim ilar view point. The result is an im­
provem ent over the state-of-the-art full 3D reconstructions
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(a) (b)

Figure 1. (a) A range image surface, and (b) fea­
ture preserving surface reconstruction.

for com plex scenes: creases and corners at the intersections 
o f the various planes in the scene have been preserved while 
m easurem ent noise has been effectively eliminated.

Full 3D reconstruction recovers a view-independent sur­
face model from m ultiple registered range images. This 
problem is distinct from depth reconstruction, also known 
as 2 |D  reconstruction, which recovers structure from only 
one point o f  view or a stereo pair o f  images [1, 2, 3], Depth 
reconstruction does not produce a model that makes sense 
when viewed from different viewpoints or when determ in­
ing inherently 3D properties, such as volume. For instance, 
occluded portions o f the scene in F igure 1(a) are present in 
the reconstructed model because m ultiple range images are 
used in full 3D reconstruction. This result would not have 
been possible with depth reconstruction methods. The full 
3D problem is not a m ere extension o f depth reconstruc­
tion because it lacks the following properties o f  the latter: 
the depth m ap has a well-defined topology (a function o f 
two variables) and there is a one-to-one correspondence b e­
tween the m easurem ents and the positions on the model.

Recovering a full 3D model from a set o f noisy 2D 
range images is an ill-posed inverse problem . Hence, the
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estimator can not depend solely on the input data, and re­
quires regularization. Regularization reduces the effects of 
measurement noise and fills surfaces in a plausible man­
ner where there is no data from any of the range images 
by placing additional constraints on the reconstructed sur­
faces. This problem has been approached in the computer 
vision literature mainly as a problem of finding sets of geo­
metric primitives that best represent the objects being mea­
sured [4, 5, 6, 7], Primitives typically have only a few shape 
parameters, i.e., height and radius for a cylinder; therefore, 
impose their own structure on to the data. In this case regu­
larization is inherent to the surface model. Such approaches 
are suitable for higher-level tasks of object recognition and 
decomposition into parts; however, they are limited to mod­
eling relatively simple objects.

An alternative is to use level set surfaces [8], which are a 
non-parametric shape representation. Level set surfaces can 
be used to recover scenes with arbitrarily complex geom­
etry and topology. The reconstructed level set models are 
not limited to prescribed topologies, and can adapt to the 
topology of the measured scenes automatically. However, 
level set surfaces do not have a rigid shape structure, and 
therefore, regularization must be performed explicitly.

We formulate surface estimation (reconstruction) in a 
variational energy optimization framework. Variational 
methods typically minimize an energy function, which is a 
weighted sum of an input data-model discrepancy term and 
a model smoothness term, with respect to the model. Then 
the surface estimator is defined as

S (D ,a )  = a rg in f [F (S ,D ) + a P (S )}  (1)
S

where a  determines the relative weights of the terms. The 
input data-model discrepancy term, F (S ,D ) ,  forces the sur­
face estimator to be “close” to the measured data. The 
model smoothness term, P (S ) , provides regularization.

This paper studies the model smoothness term. Surface 
area is a simple choice and has been used extensively in 
previous work [9, 10], This is based on the assumption that 
among surfaces with similar data-model discrepancy mea­
sures, those that have smaller area are simpler than surfaces 
of larger area, and therefore have a higher chance of oc­
currence in reality. Despite its simplicity, surface area as 
a measure of smoothness has significant drawbacks, such 
as pinching of thin structures. We argue that measuring 
the variation of the surface normal vectors offers a bet­
ter and more flexible alternative. Specifically, this family 
of smoothness functions offers an elegant and mathemat­
ically correct generalization of Perona & Malik's (P&M) 
anisotropic diffusion [12] to surface reconstruction. This 
generalization allows us to preserve important shape fea­
tures such as edges, corners and junctions in reconstructed 
scenes while effectively eliminating measurement noise and 
other artifacts.

The remainder of this paper is organized as follows. Sec­
tion 2 discusses the related work in the literature. Section 3 
discusses level set surface reconstruction and proposes a 
generalization of P&M's edge detection method as a level 
set surface regularization term. Section 4 solves the pro­
posed regularization term as a level set motion. Section 5 
demonstrates the quantitative advantages of the proposed 
method and provides examples of reconstruction of real, 
complex scenes from noisy range data. Section 6 summa­
rizes the contributions of this paper and discusses possibili­
ties for future research directions.

2. Related Work

As mentioned earlier, computer vision researchers ap­
proach surface reconstruction either as a depth reconstruc­
tion problem [1, 2, 3] o ra  view independent problem. Ear­
lier literature on the view independent problem focuses 
mainly on high-level approaches that fit various geometric 
primitives to the data [4, 5, 6, 7], Both problems are dif­
ferent from a view independent reconstruction of complex 
scenes with low-level shape representations. In response 
to the advances in 3D range sensing device, researchers in 
a variety of fields have started to study this problem. In 
computer graphics, the accuracy of the data exceeds the re­
quirements of the application, and therefore the problem is 
treated as a problem of assembling pieces of noiseless infor­
mation. For instance, Turk and Levoy [13] propose a “zip- 
pering” algorithm for combining triangle meshes of range 
maps of an object from different points of view. Curless 
and Levoy [14] take into account measurement noise by av­
eraging range information in a volumetric representation. 
However, their method is not based on statistics of the scan­
ner and model geometry.

Several authors [9,10] demonstrate the advantages of us­
ing level set methods for reconstructing complex shapes. 
They use mean curvature flow, a second-order level set par­
tial differential equation (PDE), to obtain a smooth solu­
tion. This flow is the gradient descent for the first variation 
of surface area [15], Hence, for regularization purposes, 
both approaches are formulated with the surface area model 
smoothness term in the estimator (1). Mean curvature flow 
suffers from several problems including volume shrinkage, 
pinching of thin structures, and elimination of sharp fea­
tures [11]. These problems can be observed in the results 
presented in Section 5.

To alleviate the problems associated with mean curva­
ture flow, several authors have proposed smoothing level set 
surfaces by modified second-order flows that use weighted 
combinations of principle curvatures. For instance, Lorigo 
et al. [16] propose a smoothing flow that uses the mini­
mum curvature for tubular structures. Clarenz et al. [17] 
propose an anisotropic surface mesh diffusion as a modi-
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fied second order flow, but this modified PDE lacks a varia­
tional basis, and therefore is not useful for surface recon­
struction. Stevenson and Delp propose minimizing total 
curvature, which is the surface integral of the sum of the 
squared principal curvatures, for regularizing depth recon­
struction and parametric Monge patches [18], This method 
does not apply to level set surfaces. Furthermore, the gra­
dient descent flow for total curvature is a fourth-order PDE 
that is computationally expensive and unstable to compute. 
Hence, Stevenson and Delp use a non-geometric thin plate 
approximation.

In previous work [II] , we propose a two-step approach 
to surface smoothing: (1) operate on the normal map of a 
surface, and (2) refit a surface to the processed normals. In 
this paper, we show that an quadratic measure on the vari­
ations in surface normals variations is equivalent to total 
curvature. Unlike using calculus of variations on the total 
curvature of the surface directly, our formulation in terms 
of the normals yields a computationally tractable and sta­
ble gradient descent flow. Furthermore, we also propose a 
robust measure of surface normal variations that allows a 
novel generalization of P&M feature preserving anisotropic 
image diffusion [ 12] to surface reconstruction.

Our energy optimization approach can also be stated in 
terms of Bayesian maximum a posteriori (MAP) estima­
tion. According to Bayes rule, MAP estimators maximize 
the logarithm of the product of two distinct probabilities: 
the likelihood of the measurement data conditioned on the 
surface model and the prior probability distribution of the 
model. In the estimator given by (1), the input data-model 
discrepancy term corresponds to the logarithm of the con­
ditional likelihood and the model smoothness term corre­
sponds to the logarithm of the prior [ 10]. This brings up a 
connection with other approaches that use shape priors for 
active contour and level set models [19, 20, 21, 22], How­
ever, in all of these works, the “prior” is a global descrip­
tion of expected shape(s) learned from a training set. In the 
segmentation and/or registration stage, the shape model is 
forced to be a rigid transformation of the learned prior shape 
with some tolerance for local variations. This approach 
is useful for reconstructing/segmenting specific classes of 
shapes, such as cortical surfaces from head MRI data; how­
ever, learned priors can not be used for regularization of 
reconstructed models in a general setting. The commonal­
ity between general shapes is not on a global level, but on a 
lower level, such as probability distributions for surface nor­
mal variations, which we use in this paper. The quadratic 
and robust penalty term on surface normal variations yield 
generic isotropic and anisotropic low level shape priors, re­
spectively. These priors are not learned from a training set.

3. Variational Implicit Surface Reconstruction

A deformable surface, S (t) , can be represented as the 
zero level set of a higher dimensional embedding function 
4> : IR3 x R - t  IR, S (t)  = { x (f) € IR3 | <j) (x (t) , t) = 0}, 
where t  is the evolution parameter (time). Surfaces defined 
in this way divide a volume into two parts: inside (<j> > 0) 
and outside (<j> <  0). The family of PDEs that describe 
motions of S  via d<j>/dt, and the upwind scheme for solving 
them on a discrete grid is the methods of level sets [8],

The surface reconstruction energy of (1) can be ex­
pressed as a function of the data D , and the level set model 
<j). Whitaker [10] formulates the input data-model discrep­
ancy pari of this energy as a volumetric integral

F(<j),D)= f  G (x, D)H(<j)(x)) d x , (2) 
Jn

where O is the volumetric domain swept out by the range 
images, G  is an accurate line-of-sight error function, and 
H  is the Heaviside function [23], Minimizing (2) by itself 
would correspond to a maximum likelihood estimator, but 
a maximum apriori estimator is implemented by using sur­
face area as a model smoothness term:

P(<j>) = [  11V<r/>(x)11 dx. (3)
Jn

Then, the gradient descent for <j> is

d(j)/dt = 1 1 )11 (G ( x ,D ) + a H( x ) ) , (4)

where H  = V • (V<^>/||V<^||) is mean curvature [15], 
Using discrete time steps, the model is evolved as <j>(t- + 
A t)  = <f>(t) + A t  d<f>/dt. The steady-state solu­
tion of this evolution is the surface estimator: S  = 
{x  £ IR3 | linit_►£<;, <j>(x,t) =  0}.

In this paper, we use the same data-model discrepancy 
term and the initialization method for <j)(t =  0). However, 
we propose a better model smoothness term based on mea­
sures on the variation of the surface normal vectors, N ,

P W  = j  E  ( |[V 0N ( x ) | |/p ) 11V7<r/>(x)11 dx , (5)

where V ^N  is the matrix whose rows are the gradient vec­
tors of the respective components of N  intrinsic to the iso­
surfaces of (j). The Frobenius matrix norm , i.e. the square 
root of the sum of squares of the matrix elements, is de­
noted by Il'Hyy. Notice that if E(y) =  1, (5) reduces to sur­
face area (3). On the other hand, if we choose a quadratic 
measure, E(y) = y2, we obtain the sum of squared prin­
cipal curvatures (total curvature) [11], The resulting gradi­
ent descent PDE is analogous to running the heat equation 
PDE on the surface normals. Figure 3 (a) illustrates a noisy 
field of unit vectors which are the gradient directions for the
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4. Level set motion via normal map diffusion

(a) (b)

Figure 2. (a) A  quadratic penalty term with a 

hard cutoff, (b) an exponential penalty term cor­

re spond ing  to P & M ’s  an iso trop ic  diffusion.

noisy distance transform o f the polygon shown. Figure 3 (b) 
dem onstrates the result o f smoothing with the PDE derived 
above. Similar to the heat equation, this flow eliminates 
both noise and sharp discontinuities in the data. O ur goal 
is to preserve these discontinuities while penalizing noisy 
variations o f the norm als elsewhere. This is sim ilar to seg­
m enting the normal map.

M um ford and Shah form ulate the problem o f image seg­
mentation in a variational fram ework [24]. The M um ford- 
Shah energy is the sum o f three terms: (i) the data-model 
discrepancy, (ii) quadratic penalty on model image sm ooth­
ness over the image domain except on a set o f discontinu­
ities m odeled by a binary image, and (iii) the length o f the 
discontinuities in that binary image. The sum o f the latter 
two term s correspond to using the penalty function, E(y),  
shown in Figure 2(a). The existence o f a binary model poses 
serious difficulties in the estimation process. Nordstrom
[25] and Black et al. [26] show that P&M  anisotropic dif­
fusion approach to edge detection [12] is equivalent to using 
a corresponding robust penalty term in the M um ford-Shah 
segmentation framework. This penalty term,

E(y)  =  1 -  f f (6)

shown in Figure 2(b), avoids using a binary discontinuity 
model. The param eter // controls the degree o f edge preser­
vation. The above result can readily be generalized to nor­
mal vectors by substituting y = 11 V ^ N (x )  1 1 . Figure 3(c) 
illustrates the result o f smoothing the noisy image o f nor­
mals with this penalty term. The discontinuities in the nor­
mal directions between the quadrants are preserved while 
the noise is smoothed. M inim ization o f energies o f the form 
(5) require solving fourth-order level set PDEs, a com puta­
tionally unstable and expensive task. The next section intro­
duces a m ethod for breaking the solution into two second- 
order PDEs that can be efficiently solved.

In equation (5), V ^ N  is the m atrix whose rows are the 
gradient vectors o f the respective com ponents o f N  intrin­
sic to the isosurfaces o f <j>. By intrinsic, we mean that when 
using implicit representations one m ust account for the fact 
that derivatives o f functions defined on the surface are com ­
puted by projecting their 3D derivatives onto the surface 
tangent plane. The 3 x 3  projection m atrix for the implicit 
surface normal is P  =  V(j> §o V<j>/ ||V<^||", where $o is the 
tensor product. The projection m atrix onto the surface tan­
gent plane is I  — P , where I  is the identity matrix. Then 
the intrinsic gradient o f the norm als can be defined using 
this projection operator and the regular Euclidean gradient 
V 0N  =  V N  (I -  P).

Given an initialization for (j) with the m ethods described 
in [10], we com pute the surface norm als N  =  V(j)/ ||V<^||. 
Then, to avoid solving fourth-order level set PDEs directly, 
we decouple N  from <j>. In other words, we fix (j> (the sur­
face shape) as we process the norm als to m inim ize the en­
ergy given by (5). Solutions to constrained m inimization 
for unit vectors on an implicit surface are discussed in [27]: 
however, the goal in that w ork is to not to smooth surfaces, 
but to diffuse general vector functions on surfaces. We im­
plem ent the constrained m inim ization with the following 
second-order PDE:

m  =
at {

N  $o N )  V • [ £ '  (J| V 0N | | /p J V 0N j (7) 

where E'(y)  is the derivative o f  E(y).  For the penalty term

given in (6), g = e ^  up to a constant multiplicative fac­
tor. Figure 3 (a) illustrates a noisy field o f unit vectors. F ig­
ure 3 (b) and (c) dem onstrate results o f sm oothing with the 
choices o f E(y)  discussed in Section 3.

The next step is to relate the deformation o f the level sets 
o f (j) to the evolution o f N . Once m ore, using a variational 
approach, we can m anipulate (j) so that it fits the new normal 
field by m inim izing a penalty function,

'D((j>) = j  |y v < £ -  V < £ - V<j>- V N j dS,  (8)

that quantifies the discrepancy between the gradient vectors 
o f <j> and the target normal m ap Ballester et al. [28] use the 
same function for filling in m issing regions in images by 
jo in t interpolation o f the image intensity and its gradient. 
The first variation o f this function with respect to (j) is

^  =  - V  
d<}>

V<j>
•N =  -  [H0 -  H N 1 (9)

where is the mean curvature o f the level set surface and 
H n is ha lf the divergence o f the normal map. Figure 3(b) 
and (c) illustrate the curves refitted to the sm oothed normal
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Figure 3. (a )N orm als com puted from  a no isy  d istance  transform  of a polygon, norm als sm oothed  with (b) the 

quadratic penalty term, and (c) the robust penalty term.

Figure 4. Surface  reconstruction flow chart.

fields with this approach. Finally, the gradient descent for 
the surface reconstruction with the model smoothness en­
ergy (5) is

d<j>/dt = 1 1 )11 (G (x , D) +  a  ( f f 0 (x) -  iJN (x))) ,
(10)

which is sim ilar to (4), but has a different sm oothing term.
The flow chart for the algorithm is shown in Figure 4. 

We have derived a gradient descent for the normal m ap that 
minim ize the energy functions o f the form (5). The norm als 
processing stage o f the algorithm com putes the gradient de­
scent for the norm als defined in (7) for a fixed num ber of 
iterations (25 for the experim ents in this paper). Hence, we 
avoid evolving evolving the norm als too far away from their 
initialization from <j>. The surface fitting to the the com bined 
normal map and data term s is given as a gradient descent in
(10). This stage o f the algorithm is m n until the discrep­
ancy m easure (8) between the new norm als and <j> ceases to 
decrease, which signals the need for another round o f pro­
cessing the normal vectors. The overall algorithm repeats 
these two steps to m inim ize the surface reconstruction en ­
ergy in terms o f <j) until the RMS value for d(j>/dt becom es 
small (less than 10- 6 ), which signals convergence. This

algorithm consists of solving two second-order PDEs in se­
ries instead o f a direct fourth-order PDE, which makes it 
com putationally tractable. We show the relationship o f this 
algorithm to solving the direct fourth-order PDE in [11].

5. Experiments
In this section, we com pare reconstructions with pro­

posed the model smoothness energies against reconstruc­
tions with the standard surface area energy. For the pro­
posed family o f energies (5), we will call the choice of

.

E(y)  = y2 and E(y)  = 1 — e ^  , the isotropic and 
anisotropic reconstructions, respectively. N ote that // is 
fixed at 0.2 for all the experim ents. Unlike, in P&M  im­
age diffusion, this param eter does not need to be changed 
for different surface reconstructions. In the context of P&M  
image diffusion, the units o f  // are in gray levels; conse­
quently, the optimal choice o f // is image dependent. In sur­
face reconstruction, the units are in curvature which is data 
independent. This makes it possible to choose a ft value that 
gives consistent results over a broad range o f surfaces.

We first experim ent with geom etric shapes for which we 
can construct analytical distance transforms. We use the 
following experim ent setup:

1. Build range images by sim ulating the laser range finder 
located at several positions,

2. Add independent Gaussian noise to the range images,

3. Reconstruct a model, and

4. Com pute the root m ean square geom etric distance, b e­
tween the resulting model and the analytical shape.

The first shape we exam ine is a sphere with radius 1 unit. 
All other distances are relative to this m easurem ent unit. 
For this experim ent we sim ulate six range finders located at 
a distance o f 3.5 units from the center o f the sphere along 
the six cardinal directions. Independent Gaussian noise 
with a standard deviation o f 0.1 units, is added to each range 
image. Figure 5(a) plots the RMS error, £ , against the log­
arithm o f the regularization weight, log a ,  for the different
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reconstructions. The units on the v-axis are the same as the 
units used to described the size of the shape. It can be ob­
served from Figure 5 that the limiting value for £  as a  —¥ 0 
is approximately 0.0125. This limit is the error obtained 
if surface reconstruction is performed without regulariza­
tion. This error level is smaller than the noise added to the 
range images because of the averaging effect of using mul­
tiple range images. The anisotropic and the isotropic cur­
vature priors at their optimal weight provide a 75% reduc­
tion on this error. On the other hand, surface area provides 
slightly better than a 50% reduction at its optimal weight. 
The shapes of the error plots is more important than the re­
sults at optimal choices of weight. The surface area prior 
performs poorly as a  is increased beyond 1; this is due to 
the fact that the surface area prior causes shrinkage in the 
surface models. In practice, this will mean difficulties for 
the user in choosing a weight for surface area regularization 
that works different reconstruction scenarios. In contrast, 
the proposed reconstructions have relatively flat error plots. 
Isotropic reconstruction is as good as the anisotropic recon­
struction because the sphere does not contain creases.

To examine the differences between isotropic and 
anisotropic reconstruction further, we experiment with a 
cube shape. In this experiment, we use 8 range finder lo­
cations (one in each octant). Figure 6 (a) and (b) show the 
original cube with sides 1 unit long, and the surface ini­
tialization from the noisy range images, respectively. In­
dependent Gaussian noise with standard deviation 0.1 was 
added to the simulated data to create the noisy range im­
ages. The results (see Figure 6) with isotropic reconstruc­
tion have rounded corners compared to the successfully 
denoised, approximately piecewise planar results obtained 
with the anisotropic reconstruction.

The next example involves 12 real range scans of a room 
which were registered using the methods described in [10]. 
A close-up view of a portion of one of the range images and 
the result of anisotropic reconstruction are shown in Fig­
ure 1. The anisotropic reconstruction of the entire scene is 
shown in Figure 7. We now examine reconstructions of one 
of the chairs in this scene. Figure 8 (a), (c) and (e) illustrate 
the results obtained by qualitatively choosing good values 
for a . Figure 8(b), (d) and (f) illustrate the results if a  is 
chosen to be 10 times this value. These results show that 
the anisotropic reconstruction produces the best results and 
is least sensitive to the choice of a . Another well known 
problem with surface area reconstruction can easily be ob­
served in Figure 8(b); the beam connecting the base to the 
seat is being pinched-off. This experiment illustrates the 
importance of the anisotropic reconstruction for scenes with 
high curvature features and sharp creases.

Figure 9 illustrates anisotropic reconstructions of a ve­
hicle. This example further illustrates the success of the 
anisotropic reconstruction in denoising data with sharp fea­

WBight
(a)

(b)

Figure 5. R m s  d istance  between the recon­

structed and the analytical surface  for (a) the 

sphere, and (b) the cube.

tures. The current shortcoming of this method is the com­
putational speed which was approximately one hour on a 
Intel Xeon I.7Ghz Proc. for the examples presented.
6. Conclusion

We derive a variational generalization of P&M 
anisotropic diffusion for feature preserving surface recon­
struction. This generalization is based on a robust penalty 
on surface normal vector variations, which is shown to 
have important advantages over using surface area and the 
quadratic penalty on surface normal vector variations for 
regularization. The data term is independent of the prior, 
the ideas introduced in this paper can be applied to other 
forms of surface reconstruction such as applications in to­
mography [29]. We use implicit surfaces, representing the 
implicit function on a discrete grid, modeling the deforma­
tion with the method of level sets. Therefore, the method 
applies equally well to surfaces that can be represented in 
a volume. The results shown in this paper are not possible 
with previous methods in the literature.

Measures on surface normal variations require solving
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5 2 a

Figure 8. R e su lts  for the surface  area reconstruction with w eigh ts (a) 1, and (b) 10, isotropic  reconstruction  

with w eigh ts (c) 1, and (d) 10, an iso trop ic  reconstruction with w eigh ts (e) 1, and (f) 10.

i  0  9

(a) (b) (c)

Figure 6. (a) Initialization from no isy  data. R e su lt­

ing m odel for (b) isotropic reconstruction, and (c) 

an iso trop ic  reconstruction with a =  10.

fourth-order PDEs on level sets. However, by processing 
the normals separately from the surface, we can solve a pair 
of second-order equations instead of a fourth-order equa­
tion. This method is numerically more stable and compu­
tationally less expensive than solving the fourth-order PDE 
directly. The shortcoming of this method is the computa­
tion time; however, the process lends itself to parallelism, 
and therefore, the use of multi-threading.
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Figure 9. (a) One of 12 range im ages u sed  in ex­

periment, (b) result of feature preserv ing recon­

struction from  a sim ilar view point, and (c) a dif­

ferent view point.
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