3 research outputs found

    Representation Learning for Words and Entities

    Get PDF
    This thesis presents new methods for unsupervised learning of distributed representations of words and entities from text and knowledge bases. The first algorithm presented in the thesis is a multi-view algorithm for learning representations of words called Multiview Latent Semantic Analysis (MVLSA). By incorporating up to 46 different types of co-occurrence statistics for the same vocabulary of english words, I show that MVLSA outperforms other state-of-the-art word embedding models. Next, I focus on learning entity representations for search and recommendation and present the second method of this thesis, Neural Variational Set Expansion (NVSE). NVSE is also an unsupervised learning method, but it is based on the Variational Autoencoder framework. Evaluations with human annotators show that NVSE can facilitate better search and recommendation of information gathered from noisy, automatic annotation of unstructured natural language corpora. Finally, I move from unstructured data and focus on structured knowledge graphs. I present novel approaches for learning embeddings of vertices and edges in a knowledge graph that obey logical constraints.Comment: phd thesis, Machine Learning, Natural Language Processing, Representation Learning, Knowledge Graphs, Entities, Word Embeddings, Entity Embedding

    Representation Learning for Words and Entities

    Get PDF
    This thesis presents new methods for unsupervised learning of distributed representations of words and entities from text and knowledge bases. The first algorithm presented in the thesis is a multi-view algorithm for learning representations of words called Multiview LSA (MVLSA). Through experiments on close to 50 different views, I show that MVLSA outperforms other state-of-the-art word embedding models. After that, I focus on learning entity representations for search and recommendation and present the second algorithm of this thesis called Neural Variational Set Expansion (NVSE). NVSE is also an unsupervised learning method, but it is based on the Variational Autoencoder framework. Evaluations with human annotators show that NVSE can facilitate better search and recommendation of information gathered from noisy, automatic annotation of unstructured natural language corpora. Finally, I move from unstructured data and focus on structured knowledge graphs. Moreover, I present novel approaches for learning embeddings of vertices and edges in a knowledge graph that obey logical constraints

    K-BERT: Enabling Language Representation with Knowledge Graph

    Full text link
    Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.Comment: 8 pages, 2019091
    corecore