15 research outputs found

    Representable Disjoint NP-Pairs

    Get PDF
    We investigate the class of disjoint NP-pairs under different reductions. The structure of this class is intimately linked to the simulation order of propositional proof systems, and we make use of the relationship between propositional proof systems and theories of bounded arithmetic as the main tool of our analysis. Specifically we exhibit a pair which is complete under strong reductions for all disjoint NP-pairs representable in a theory. We use these pairs to explain the simulation order of NP-pairs under these reductions. As corollaries we also get simplified proofs of results obtained earlier in [3] and [5]

    Classes of representable disjoint NP-pairs

    Get PDF
    For a propositional proof system P we introduce the complexity class of all disjoint -pairs for which the disjointness of the pair is efficiently provable in the proof system P. We exhibit structural properties of proof systems which make canonical -pairs associated with these proof systems hard or complete for . Moreover, we demonstrate that non-equivalent proof systems can have equivalent canonical pairs and that depending on the properties of the proof systems different scenarios for and the reductions between the canonical pairs exist

    NP-Completeness, Proof Systems, and Disjoint NP-Pairs

    Get PDF

    Tuples of disjoint NP-sets

    Get PDF
    Disjoint NP-pairs are a well studied complexity theoretic concept with important applications in cryptography and propositional proof complexity. In this paper we introduce a natural generalization of the notion of disjoint NP-pairs to disjoint k-tuples of NP-sets for k ≥ 2. We define subclasses of the class of all disjoint k-tuples of NP-sets. These subclasses are associated with a propositional proof system and possess complete tuples which are defined from the proof system. In our main result we show that complete disjoint NP-pairs exist if and only if complete disjoint k-tuples of NP-sets exist for all k ≥ 2. Further, this is equivalent to the existence of a propositional proof system in which the disjointness of all k-tuples is shortly provable. We also show that a strengthening of this conditions characterizes the existence of optimal proof systems

    Disjoint NP-pairs from propositional proof systems

    Get PDF
    For a proof system P we introduce the complexity class DNPP(P) of all disjoint NP-pairs for which the disjointness of the pair is efficiently provable in the proof system P. We exhibit structural properties of proof systems which make the previously defined canonical NP-pairs of these proof systems hard or complete for DNPP(P). Moreover we demonstrate that non-equivalent proof systems can have equivalent canonical pairs and that depending on the properties of the proof systems different scenarios for DNPP(P) and the reductions between the canonical pairs exist

    Logical closure properties of propositional proof systems - (Extended abstract)

    Get PDF
    In this paper we define and investigate basic logical closure properties of propositional proof systems such as closure of arbitrary proof systems under modus ponens or substitutions. As our main result we obtain a purely logical characterization of the degrees of schematic extensions of EF in terms of a simple combination of these properties. This result underlines the empirical evidence that EF and its extensions admit a robust definition which rests on only a few central concepts from propositional logic

    Upward Translation of Optimal and P-Optimal Proof Systems in the Boolean Hierarchy over NP

    Get PDF

    Characterizing the Existence of Optimal Proof Systems and Complete Sets for Promise Classes.

    Get PDF
    In this paper we investigate the following two questions: Q1: Do there exist optimal proof systems for a given language L? Q2: Do there exist complete problems for a given promise class C? For concrete languages L (such as TAUT or SAT) and concrete promise classes C (such as NP∩coNP, UP, BPP, disjoint NP-pairs etc.), these ques-tions have been intensively studied during the last years, and a number of characterizations have been obtained. Here we provide new character-izations for Q1 and Q2 that apply to almost all promise classes C and languages L, thus creating a unifying framework for the study of these practically relevant questions. While questions Q1 and Q2 are left open by our results, we show that they receive affirmative answers when a small amount on advice is avail-able in the underlying machine model. This continues a recent line of research on proof systems with advice started by Cook and Kraj́ıček [6]

    On the existence of complete disjoint NP-pairs

    Get PDF
    Disjoint NP-pairs are an interesting model of computation with important applications in cryptography and proof complexity. The question whether there exists a complete disjoint NP-pair was posed by Razborov in 1994 and is one of the most important problems in the field. In this paper we prove that there exists a many-one hard disjoint NP-pair which is computed with access to a very weak oracle (a tally NP-oracle). In addition, we exhibit candidates for complete NP-pairs and apply our results to a recent line of research on the construction of hard tautologies from pseudorandom generators

    The deduction theorem for strong propositional proof systems

    Get PDF
    This paper focuses on the deduction theorem for propositional logic. We define and investigate different deduction properties and show that the presence of these deduction properties for strong proof systems is powerful enough to characterize the existence of optimal and even polynomially bounded proof systems. We also exhibit a similar, but apparently weaker condition that implies the existence of complete disjoint NP-pairs. In particular, this yields a sufficient condition for the completeness of the canonical pair of Frege systems and provides a general framework for the search for complete NP-pairs
    corecore