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Abstract. We investigate the class of disjoint NP-pairs under different
reductions. The structure of this class is intimately linked to the simu-
lation order of propositional proof systems, and we make use of the re-
lationship between propositional proof systems and theories of bounded
arithmetic as the main tool of our analysis. Specifically we exhibit a pair
which is complete under strong reductions for all disjoint NP-pairs rep-
resentable in a theory. We use these pairs to explain the simulation order
of NP-pairs under these reductions. As corollaries we also get simplified
proofs of results obtained earlier in [3] and [5].

1 Introduction

Disjoint NP-pairs (DNPP) naturally occur in cryptography (cf. [4]). The inves-
tigation of disjoint NP-pairs in connection with propositional proof systems was
initiated by Razborov [12] and further developed by Pudldk [11] and K&bler
et al. [5]. These applications attracted more complexity theoretic research on
the structure of the class of disjoint NP-pairs (cf. [2,3,5]). Various reductions
between NP-pairs were introduced by Grollmann and Selman [4]. For the most
usual form of a many-one-reduction between DNPP a polynomial time com-
putable function is required to map the components of the two pairs to each
other. We denote this reduction here by <,. Later Kobler et al. defined in [5]
a strong reduction (denoted by <,), where additionally to <, the reduction
function has to map the complements of the pairs to each other.

One of the most prominent questions regarding disjoint NP-pairs is whether
there exist complete pairs for the class of all DNPP under these reductions. These
problems remain open and various oracle results from [2] indicate that these are
indeed difficult questions. Under the assumption that there is an optimal proof
system, however, Razborov showed the existence of a <,-complete pair. This
was improved by Kobler et al. in [5] to the existence of a complete pair for <,.

Razborov associates to a proof system a canonical disjoint NP-pair and uses
the relationship between theories of bounded arithmetic and propositional proof
systems for his investigation. In this paper we define another canonical pair
for a proof system which plays the same role for the stronger <;-reduction as
Razborov’s pair for <,. We show that these canonical pairs are quite typical for
the class of all DNPP in the sense that every DNPP is <,-reducible to such a



canonical pair, and if there exists a <;-complete pair then it is equivalent to a
canonical pair. As one consequence we obtain that, while <, and <, are generally
different, the existence of a <,-complete pair already implies the existence of a
<,-complete pair. This was also observed by Glafler et al. in [3] using direct
arguments where no reference to proof systems is made.

In this paper, however, we aim to explain some facts about the structure of
disjoint NP-pairs by using the close relationship between NP-pairs, proof systems
and bounded arithmetic. This also considerably simplifies proofs of earlier results
in [3] and [5] which were originally shown by more involved simulation techniques.

Pursuing the afore mentioned goal we start in Sect. 2 by reviewing relevant
facts about the connection between propositional proof systems and bounded
arithmetic. We only give a very brief presentation tailored to our applications
in later sections and refer the reader to [6] or [10] for a detailed account of this
rich relationship.

In Sect. 3 we define and separate the afore mentioned reductions between
NP-pairs.

In Sect. 4 we start to explain the relationship between disjoint NP-pairs and
propositional proof systems by restricting the class of all DNPP to the DNPP
representable in some theory T of bounded arithmetic, where a DNPP is called
representable in T if the disjointness of the pair is provable in the theory T'.
We present a <;-complete pair for all DNPP representable in sufficiently strong
theories. To make the paper self contained we also reprove some known results.

In Sect. 5 we show that if <,-complete pairs exist then these are equivalent to
a canonical pair from Sect. 4 and derive some consequences on the relationship
between the simulation order of proof systems and the class of DNPP.

In Sect. 6 we discuss separators and Turing reductions. We show that our
pairs from Sect. 4 are candidates for NP-pairs which can not be separated by
sets from P, and that the class of all DNPP representable in some theory T is
closed under smart Turing-reductions implying that even the existence of smart
Turing-complete pairs suffices for the existence of <;-complete DNPP which is
also shown in [3].

2 Preliminaries

Propositional proof systems were defined in a very general way by Cook and
Reckhow in [1] as polynomial time functions P which have as its range the set
of all tautologies. A string © with P(m) = ¢ is called a P-proof of the tautology
¢. By P F<p, ¢ we indicate that there is a P-proof of ¢ of length < m. If ¢, is
a sequence of propositional formulas we write P . ¢, if there is a polynomial
p such that P FSP(MPnD Pn-

Given two proof systems P and S we say that S simulates P (denoted by
P < S) if there exists a polynomial p such that for all tautologies ¢ and P-proofs
m of ¢ there is a S-proof 7’ of ¢ with |7'| < p(|n]). If such a proof ' can even
be computed from 7 in polynomial time we say that S p-simulates P and denote



this by P <, S. A proof system is called (p-)optimal if it (p-)simulates all proof
systems.

In this paper we are only concerned with sufficiently strong proof systems
simulating the extended Frege proof system EF, where EF is a usual textbook
proof system based on axioms and rules and augmented by the possibility to
abbreviate complex formulas by propositional variables to reduce the proof size
(see e.g. [6]). For simplicity we call proof systems simulating EF strong. A
method how to actually construct strong proof systems was recently described
in [7].

We now review the relationship between theories of arithmetic and proof
systems. Let L be the language of arithmetic (cf. [6]). Bounded L-formulas are
formulas in the language of L where only quantifiers of the form (Vz < #(y))
and (3z < s(y)) occur with L-terms ¢ and s. In the following we are particularly
interested in IT} and X?-formulas where only bounded universal and bounded
existential quantifiers are allowed, respectively.

To explain the connection to propositional proof systems we have to trans-
late L-formulas into propositional formulas. Let o(z) be a IT?-formula. We can
assume that ¢ is of the form (Vy)|y| < |z|*¥ — ¥(z,y) with some polynomial
time computable predicate 1. Hence we can compute v(z,y) by polynomial size
boolean circuits C),, for numbers z of length n. From C),, we build a proposi-
tional formula ||¢||™ with atoms p, ..., p, for the bits of z, atoms g, . .., g,» for
the bits of y and auxiliary atoms 71, ...,7r,0) for the inner nodes of C),. The
formula ||||™ describes that if the values for 7 are correctly computed from p
and q then the output of the computation of C), is 1. Thus we get a sequence of
propositional formulas ||||™ of polynomial size in n and ||¢||™ is a tautology iff
(z) holds for all natural numbers of length < n.

Encoding propositional formulas as numbers in some straightforward way we
can in a theory T speak of propositional formulas, assignments and proofs. Let
Prfp(m, @) be a L-formula describing that 7 is the encoding of a correct P-proof
of the propositional formula encoded by . Similarly, let Taut(p) be a L-formula
asserting that all assignments satisfy the formula ¢. Because P is computable
in polynomial time Prfp is definable by a X?-formula whereas Taut is in IT}.

The reflection principle for a propositional proof system P is the L-formula

RFN(P) = (Vr)(Vo)Prfp(m, p) — Taut(yp)

and states a strong form of the consistency of the proof system P. From the last
remark it follows that REN(P) is a VIT?-formula.

In [8] a general correspondence between L-theories T and propositional proof
systems P is introduced. Pairs (7', P) from this correspondence possess in par-
ticular the following two properties:

1. For all p(z) € II? with T F (Vz)p(x) we have polynomially long P-proofs of
the tautologies ||¢(x)||™.

2. T proves the correctness of P, i.e. T + RFN(P). Furthermore P is the
strongest proof system for which T' proves the correctness, i.e. T+ RFN(S)
for a proof system .S implies S <, P.



The most prominent example for this correspondence is the pair (S, EF) where
S is a L-theory with induction for X%-formulas. This in particular allows the
formalization of polynomial time computations and the provability of its basic
properties (see e.g. [6] Chapter 6).

To every L-theory T' D S} with a polynomial time set of axioms we can
associate a proof system P which is unique up to <,-equivalence by property 2
above. Conversely every strong proof system has a corresponding theory, but
here according to property 1 only the VIT?-consequences of T are determined by
P.

As the correspondence only works for sufficiently strong proof systems we
will restrict ourselves to proof systems P > EF and theories T D S3.

By N we denote the standard model of arithmetic which is in particular a
submodel of all models of theories T' considered here.

3 Reductions between NP-Pairs

A pair (4, B) is called a disjoint NP-pair (DNPP), if A, B € NP and ANB = {.
To exclude trivial cases we additionally require A # () and B # (. We consider
the following reductions between disjoint NP-pairs.

Definition 1. Let (A4, B) and (C,D) be DNPP.

1. (A, B) is polynomially reducible to (C,D) ((A,B) <, (C, D)), if there exists
a function f € FP such that f(A) C C nd f(B) C D.
2. (A, B) is strongly reducible to (C,D) ((A,B) <, (C,D)), if there exists a
function f € FP such that f=*(C) = A and f~*(D) = B.

3. As usual we write (A,B) =, (C,D) for (A,B) <, (C,D) and (C,D) <,

(A, B). =; is defined in the same way.

(A,B) <, (C,D) does not in general imply that A and B are reducible to C
and D, respectively, but if f realizes a <;-reduction from (A, B) to (C, D), then
f is simultaneously a many-one-reduction between A and C as well as between
B and D. Equivalently we can also view <y as a reduction between triples. In
addition to the two conditions f(A) C C and f(B) C D for <, we also require
f(AUB) CCUD.

Obviously <, is a refinement of <,. Under the assumption P # NP this is
indeed a proper refinement. The reason for this lies in the following proposition:

Proposition 2. For every DNPP (A, B) there exists a DNPP (A', B') such that
(A,B) =, (A", B'") and A', B' are NP-complete.

Proof. Choose A’ = A x SAT and B' = B x SAT. Then we have (A4, B)
(A',B") via z — (z,p0) with a fixed formula pg € SAT, and (4', B') <, (4,
via the projection (z, ) — =.

O 9»'!\

With this proposition we can easily separate the reductions <, and <, under
the assumption P # NP. Namely, let A and B be nonempty sets in P such that



AU B is also nonempty. Choose A’ and B’ as in the last proposition. Then
(A,B) =, (A,B') but (A,B) #, (A", B') because (A',B') <s; (A,B) would
imply in particular A’ <P, A and hence P=NP. On the other hand if P=NP
then all DNPP (A, B) where all three components A, B, AU B are nonempty
would be <,-equivalent. This equivalence of P # NP and the separation of <,
from <, for DNPP with all three components nonempty (or equivalently for
DNPP with all three components infinite) is also observed in [3].

4 Representable NP-Pairs

In the following we investigate the relationship between disjoint NP-pairs and
propositional proof systems. We will use the correspondence between proof sys-
tems and arithmetical theories as explained in Sect. 2. For this section let P be
a strong proof system and T be a corresponding theory.

Following Razborov we call a X?-formula ¢ a representation of an NP-set A,
if for all natural numbers a

NEy() < acA.

A DNPP (A, B) is representable in T, if there are X?-formulas ¢ and 1) repre-
senting A and B, respectively, such that

T+ (Vo) (=p(z) V ~¢(z)) -

For the last line we also use the abbreviation T AN B = 0. Since ANB = is
a VII!-formula we can also express the disjointness of A and B propositionally
by the sequence of tautologies ||—p(z) V -9 (z)||™, which we again shortly denote
by [|[AN B = Q||™.

The DNPP representable in T' can also be characterized via the corresponding
proof system P in the following way:

Proposition 3. A DNPP (A, B) is representable in T if and only if
for suitable representations of A and B.

Proof. Let ¢ and v be representations for A and B, respectively, such that

T+ (Vz)(—p(z) V ()
Because this is a VIT?-formula, we have P &, ||-p(x) V =) (z)||", which we write
by definition as P F, |[|[AN B = §||™.
For the other direction let ¢ and 1) be representations of A and B, such that
for some natural number k¥ we have P k. » ||-¢(z) V —¢(z)||™. Consider the
formula -

¥'(2) = ¥(@) A @n)lr| < |z]* APrep(m, [Ime(y) v =0 @) -

We have ' € X% and furthermore N = (Vz)y'(z) ¢ ¢(z), ie. ¢’ is also a
representation of B. From 7'+ RFN(P) it follows that T' + (Vx)(—(z) V' (z)),
hence (A, B) is representable in T'. O



The next lemma shows that all pairs representable in a theory form a reasonable
complexity class.

Lemma 4 (Razborov [12]). The set of all DNPP representable in T is closed
under <p,-reductions.

Proof. Let (A,B) and (C,D) be DNPP such that f : (4,B) <, (C,D) and
T+ CnND =0. Consider the NP-sets

A'={z|z € Aand f(z) € C}
B'={z|z € B and f(z) € D} .

Obviously A = A’ and B = B'. From T D S} and f € FP we get T +
(Vz)(3ly) f(z) = y- Hence

T+ (Vz)(z € ANB — f(z) e CND)
and with THC ND = 0 we conclude T+ A'N B’ = {. O

Following Razborov [12] we associate a disjoint NP-pair (Ref(P),SAT*) with
a proof system P with

Ref(P) = {(¢,1™) | P F<m ¢}
SAT* = {(p,1™) | ¢ € SAT} .
(Ref(P),SAT™) is called the canonical pair of P.

Lemma 5 (Razborov [12]). The canonical pair of P is representable in T'.

Proof. We argue in T'. Let (¢,1™) € Ref(P). Then there is a P-proof 7 of
. Since RFN(P) is available in T' we conclude from Prfp(w, ) the formula
Taut(y), hence - € SAT and therefore (p,1™) ¢ SAT*. O

Now we associate a second disjoint NP-pair with a proof system P. For a
propositional formula ¢ let Var(p) be the set of propositional variables occurring
in ¢. Let

Ui(P) = {(p,¥,1™) | Var(p) N Var(y) =0, ¢ € SAT and P F<p, o V 1b}

Us = {(p,9,1™) | Var(p) N Var(y)) = @ and —p € SAT} .

As for the canonical pair we get:

Lemma 6. The pair (U1 (P),Us) is representable in T.

Proof. Let (p,1%,1™) € Uy(P) and © be a P-proof of ¢ V 9 of length < m.
Because - € SAT we have an assignment a with ¢(a) = 0. If we substitute
the variables of ¢ by 0 or 1 according to «, we get from the proof 7 a proof =’
of ¢. Hence we have T + (37')Prfp(n’,4). Because T proves the correctness of
P, we get T + Taut () and thus T F (p,,1™) & Us. O



Now we come to the main theorem of this section which states the complete-
ness of (U1(P),Us) for all DNPP representable in T’ under <,-reductions.

Theorem 7. A DNPP (A, B) is representable in T if and only if (A,B) <;
(U1(P), U2).

Proof. Let (A, B) be a DNPP such that T+ AN B = (). Let the NP-sets A and
B be of the form

A={z|Bylyl < 121°V A (z,y) € C}
B = {z|(32)l2| <|2|°™ A (2,2) € D}

with polynomial time predicates C' and D. Because of the correspondence be-
tween T and P there is a polynomial p for the VII?-formula A N B = ) such
that

Propm [ANB=0]" .

Here the formula ||[A N B = Q]| is more explicitly ||(z,y) € C V (z,z) € D||"
and has propositional variables for x,y and z and auxiliary variables for the
computation of boolean circuits for C' and D. We can plug into this formula
natural numbers a of length n for x by substituting the propositional variables
corresponding to z by the bits of a. We indicate this by the suffix (z/a).

Now we claim that the function

(@) = (I(z,y) & Cll'""l(z/a), ||z, 2) & DI|* (z/a), 1712D)

realizes a < -reduction from (A, B) to (Uy(P),Uz).

If we choose different auxiliary variables for the computation of C' and D and
also disjoint variables for y and z, then the formulas ||(z,y) ¢ C||'*!(z/a) and
l(z, 2) € D||'*!(x/a) have no common variables. Furthermore for every natural
number a the formulas

I(z,y) & Cll*l(z/a) V ||(z, 2) & DI|!*)(z/a)
I(z,y) € CV (z,2) & D||*l(z/a)
AN B = 0]|“!(z/a)

have P-proofs of length < p(|a|), which we get from the P-proofs of || ANB = §]|'®!
by substituting the variables for = by the bits of a.
The last thing to check is that the formula

-li(z,y) € Cll*l = ll(z,y) € ||,

expressing, that there is a correct accepting computation of C' with input (z,),
is satisfiable if and only if the variables of = are substituted by the bits of a
number a € A.

Similarly, —||(x, 2) ¢ D||!*l(x/a) is satisfiable if and only if a € B.

The backward implication follows from Lemma 6 and the fact, that the DNPP
representable in T' are closed under <, and hence also under <; according to
Lemma 4. ]



The pair (Uy(P),Usz) strongly resembles the interpolation pair defined by
Pudldk in [11]:

Ip = {(¢,9,m) | P() = ¢ V9, Var(p) N Var(y)) = @ and —p € SAT}
Ip = {(¢,9,7) | P(m) = ¢ V9, Var(p) N Var() = § and —¢ € SAT} .

This pair is p-separable, if and only if the proof system P has the efficient
interpolation property. For ||.||-translations of VIT?-formulas provable in T we
can efficiently construct polynomially long P-proofs (i.e. with functions from
FP). Hence the proof of the last theorem also shows the <,-completeness of
(I%,1}) for all DNPP representable in T'.

In [11] Pudlak defined a DNPP (A, B) to be symmetric if (B, A) < (A, B).
With Lemma 6 also the pair (Us,U;(P)) is representable in T', hence by the
last theorem (U1 (P),U>) is symmetric even with respect to the stronger <,-
reduction.

As a corollary of Theorem 7 we obtain the <,-completeness of the canonical
pair for all DNPP representable in 7', which was shown by Razborov:

Theorem 8 (Razborov [12]). A DNPP (A, B) is representable in T if and
only if (A, B) <, (Ref(P),SAT™).

Proof. For the forward implication we reduce (U; (P),Uz) to (Ref(P),SAT*) via
the projection
(0,9, 1™) = (g, 1m+PU#D)

with a suitable polynomial p.

Let (p,1,1™) € Uy (P). Then there is a P-proof 7 of length < m of p(Z) V
(7). The formula —p(Z) is satisfiable, so by substituting a satisfying assignment
@ into the proof m we get a proof «' with |7'| < m for ¢(a) v (7). Since ¢(a)
is a false formula without free variables we can evaluate it in polynomially long
P-proofs to L. Let p be a corresponding polynomial. Thus we get a P-proof of
length < m + p(|y|) for .

If (¢,1),1™) € Uy, then —) is satisfiable and hence (1, 1™12(I¢))) € SAT*.

This <p-reduction from (U (P),U,) to (Ref(P),SAT™) yields together with
the last theorem the <,-completeness of (Ref(P),SAT*) for all DNPP repre-
sentable in T'.

The backward implication follows from Lemma 4 and Lemma 5. O

Thus the pairs (Ref(P),SAT*) and (Uy(P),Us) are complete for all DNPP
representable in 7" under <,- and <;-reductions, respectively.

5 NP-Pairs and the Simulation Order of Proof Systems

Now we use the results of the last section to make some observations about the
connection between the simulation order of proof systems and disjoint NP-pairs.

In Sect. 3 it was shown that the reductions <, and <, are different under
the assumption P # NP. Still we have:



Proposition 9. For all strong proof systems P and DNPP (A, B) it holds
(4,B) <p (U1(P),U2) <= (4,B) <, (U1(P),U>) .

Proof. Let (A, B) <, (U1(P),Us). (U1(P),Us) is representable in T'. Hence with
Lemma 4 also (A, B) is representable in T, from which we conclude with Theo-
rem 7 (A, B) Ss (Ul(P),UQ)

The opposite implication follows by definition. O

Corollary 10. Let P and S be strong proof systems. Then we have:
(Ref(P),SAT™) <, (Ref(S),SAT*) <= (U1(P),Us) <, (U:1(S),Us) .
Proof. For the first direction we get from
(UL(P),U2) <p (Ref(P),SAT™) <, (Ref(S), SAT™) <p, (Ur(S), V)

together with the last proposition (Ui (P),Us) <s (U1(S),Us).
The other implication follows from

(Ref(P), SAT") <, (U1(P), V) <, (U1(5), V) <, (Ref(S),SAT") .

The following proposition is well known (see e.g. [11]):

Proposition 11. If P and S are proof systems with P < S, then we have
(Ref(P),SAT™) <, (Ref(S),SAT™) .

Proof. By assumption there is a polynomial p, such that for all formulas ¢ and
P-proofs 7 of ¢ there is a S-proof @' of length < p(|x|). Therefore the mapping

(9, 1) = (10, 170M)
is a <,-reduction from (Ref(P),SAT") to (Ref(S),SAT™). O
Proposition 11 and Corollary 10 yield:
Corollary 12. If P and S are strong proof systems with P < S, then we have

(Ul(P)JUZ) <s (UI(S),UQ) .

Kobler, Messner and Toran proved in [5] that the existence of an optimal proof
system implies the existence of <;-complete NP-pairs. This result also follows
from the last corollary. Additionally we can exhibit a complete DNPP in this
case:

Corollary 13. If P is an optimal proof system, then (U1 (P),Us) is <s-complete
for the class of all DNPP.



Proof. Let P be an optimal proof system and (A4, B) a DNPP. The sequence
of tautologies ||[A N B = §||" can be constructed in polynomial time. Hence
there is a proof system S with polynomially long proofs of these tautologies (for
example just add these tautologies as axioms to the extended Frege system).
Using Proposition 3 and Theorem 7 we get (4, B) <; (U1(5), Us). By assumption
we have S < P. Together with the previous corollary this yields (Uy(S),Us) <s
(Ul(P)7U2)7 and hence (AaB) <s (UI(P)7U2)

Therefore the pair (U (P),Us) is <,;-complete for all DNPP. m|

Proposition 14. Let (A, B) be <,-complete for the class of all DNPP. Then
we have (A, B) =, (Ref(P),SAT") for some proof system P.

Proof. As in the last proof let P be a proof system with P F, [|[AN B = §]|".
Then (A, B) <, (Ref(P),SAT") and by assumption (Ref(P),SAT*) <, (4, B).
O

In the same way we get:

Proposition 15. Let (A, B) be <;-complete for the class of all DNPP. Then
we have (A, B) =; (U1(P),Us) for some proof system P.

The following proposition is also observed in [3]:

Proposition 16. The class of all DNPP contains a <p,-complete DNPP if and
only if it contains a <g;-complete DNPP.

Proof. For the first direction we can assume with Proposition 14 that the <,-
complete DNPP has the form (Ref(P),SAT™) for some proof system P. Then
by Theorem 7 and Theorem 8 all DNPP are <,-reducible to (U1 (P),Us).

The other direction holds by definition. O

6 Separators and Turing Reductions

For disjoint NP-pairs we can also study Turing reductions as defined by Groll-
mann and Selman in [4]. For this we need the notion of a separator.

Definition 17. A set S is a separator for the DNPP (A,B) if A C S and
BCS.

Of central interest is the case where a given DNPP has a separator belong-
ing to P. Such a pair is called p-separable. The set of all p-separable DNPP
form the lowest degree with respect to the <,-reduction. For the stronger <,-
reduction this minimal degree shrinks to the set of all p-separable pairs with
empty complement, i.e. sets of the form (A, A) with A € P. But also the set of
all p-separable pairs with nonempty complement splits into different =,-degrees.
Namely, if (A, B) is a p-separable DNPP then the pair (A x SAT, B x SAT) is
also p-separable and both of its components are NP-complete, hence we have:

Proposition 18. P # NP iff there exist p-separable pairs (A, B) and (C,D),
such that AU B and C'U D are nonempty and (A, B) #, (C, D).




The question whether p-inseparable pairs exist is open. Candidates for p-
inseparable pairs come from cryptography (cf. [4]) and proof systems. Namely,
Krajicek and Pudldk demonstrate in [9] that a pair (Ao, A1) associated with
the RSA-cryptosystem is representable in the theory Si corresponding to EF.
By the results from Sect. 4 this means that (A, A1) <, (Ref(EF),SAT*) and
(Ao, 41) <5 (U1(EF),Us). Assuming the security of RSA the pair (Ag, A4;)
is not p-separable, hence under this assumption neither (Ref(P),SAT*) nor
(UL(P),U>) is p-separable for any P > EF.

If we look at the property of symmetry of pairs under <, it is clear that a
DNPP (A, B) can not be symmetric if we choose A from P and B NP-complete.
In other words:

Proposition 19. P # NP iff there exist non-symmetric pairs with respect to
<s-

A similar result for <, is not known as <,-non-symmetric pairs are p-inseparable
and it is not clear how to derive the existence of p-inseparable pairs from the
assumption P # NP.

We now come to the definition of Turing-reductions between DNPP from [4]:

Definition 20. Let (A, B) and (C,D) be DNPP. (A, B) is Turing reducible to
(C,D) ((A,B) <t (C, D)), if there exists a polynomial time oracle Turing ma-
chine M such that for every separator T of (C,D) L(MT) separates (A, B).

If for inputs from AU B the machine M makes only queries to CUD we call
the reduction performed by M a smart Turing reduction.

In [3] GlaBler et al. prove that the existence of a complete DNPP under smart
Turing reductions already implies the existence of a <,-complete DNPP (and
hence by Proposition 16 also of a <,-complete pair). We can easily reprove their
result in our framework by noticing:

Lemma 21. The set of all DNPP representable in a theory T is closed under
smart Turing reductions.

Proof. Let the pair (A, B) be smartly Turing reducible to (C, D) via the deter-
ministic oracle Turing machine M, and let (C, D) be representable in T'. Consider
the NP-sets

A'={z |z € A and M(x) accepts}
B' = {z |z € B and M (z) rejects} .

By ” M (x) accepts” we mean that M accepts the input = by a computation where
all oracle queries that are positively answered are verified by a computation of
a nondeterministic machine for C' and all negative answers are verified by D.
Since the reduction is smart we have A = A’ and B=B'.For T+ A'NB' = it
suffices to show in T the uniqueness of the computation of M at inputs z from
AUB. T can prove the uniqueness of computations of the deterministic machine
M, and the possibility to answer an oracle query both positively and negatively
is excluded by T - C N D = 0. |



From this we conclude:

Proposition 22. Suppose (A, B) is a smart <p-complete pair. Then for any
theory T such that T = AN B = § the pair (U1(P),Us) is <s-complete for all
DNPP where P is the proof system corresponding to T'.

Proof. Choose a theory T with T = AN B = . Then by the last lemma all
DNPP are representable in T and hence by Theorem 7 the pair (Ui (P),Us) is
<s-complete. O

It is not clear whether the class of pairs representable in some theory T is
also closed under <7p-reductions. This corresponds to the open problem from
[3] whether the existence of a <p-complete pair implies the existence of a <,-
complete DNPP.
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