4,005 research outputs found

    Deterministic Time-Space Tradeoffs for k-SUM

    Get PDF
    Given a set of numbers, the kk-SUM problem asks for a subset of kk numbers that sums to zero. When the numbers are integers, the time and space complexity of kk-SUM is generally studied in the word-RAM model; when the numbers are reals, the complexity is studied in the real-RAM model, and space is measured by the number of reals held in memory at any point. We present a time and space efficient deterministic self-reduction for the kk-SUM problem which holds for both models, and has many interesting consequences. To illustrate: * 33-SUM is in deterministic time O(n2lglg(n)/lg(n))O(n^2 \lg\lg(n)/\lg(n)) and space O(nlg(n)lglg(n))O\left(\sqrt{\frac{n \lg(n)}{\lg\lg(n)}}\right). In general, any polylogarithmic-time improvement over quadratic time for 33-SUM can be converted into an algorithm with an identical time improvement but low space complexity as well. * 33-SUM is in deterministic time O(n2)O(n^2) and space O(n)O(\sqrt n), derandomizing an algorithm of Wang. * A popular conjecture states that 3-SUM requires n2o(1)n^{2-o(1)} time on the word-RAM. We show that the 3-SUM Conjecture is in fact equivalent to the (seemingly weaker) conjecture that every O(n.51)O(n^{.51})-space algorithm for 33-SUM requires at least n2o(1)n^{2-o(1)} time on the word-RAM. * For k4k \ge 4, kk-SUM is in deterministic O(nk2+2/k)O(n^{k - 2 + 2/k}) time and O(n)O(\sqrt{n}) space

    On Restricted Nonnegative Matrix Factorization

    Get PDF
    Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative n×mn \times m matrix MM into a product of a nonnegative n×dn \times d matrix WW and a nonnegative d×md \times m matrix HH. Restricted NMF requires in addition that the column spaces of MM and WW coincide. Finding the minimal inner dimension dd is known to be NP-hard, both for NMF and restricted NMF. We show that restricted NMF is closely related to a question about the nature of minimal probabilistic automata, posed by Paz in his seminal 1971 textbook. We use this connection to answer Paz's question negatively, thus falsifying a positive answer claimed in 1974. Furthermore, we investigate whether a rational matrix MM always has a restricted NMF of minimal inner dimension whose factors WW and HH are also rational. We show that this holds for matrices MM of rank at most 33 and we exhibit a rank-44 matrix for which WW and HH require irrational entries.Comment: Full version of an ICALP'16 pape

    Inapproximability of Maximum Biclique Problems, Minimum kk-Cut and Densest At-Least-kk-Subgraph from the Small Set Expansion Hypothesis

    Full text link
    The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small subset of vertices whose edge expansion is almost zero and one in which all small subsets of vertices have expansion almost one. In this work, we prove inapproximability results for the following graph problems based on this hypothesis: - Maximum Edge Biclique (MEB): given a bipartite graph GG, find a complete bipartite subgraph of GG with maximum number of edges. - Maximum Balanced Biclique (MBB): given a bipartite graph GG, find a balanced complete bipartite subgraph of GG with maximum number of vertices. - Minimum kk-Cut: given a weighted graph GG, find a set of edges with minimum total weight whose removal partitions GG into kk connected components. - Densest At-Least-kk-Subgraph (DALkkS): given a weighted graph GG, find a set SS of at least kk vertices such that the induced subgraph on SS has maximum density (the ratio between the total weight of edges and the number of vertices). We show that, assuming SSEH and NP \nsubseteq BPP, no polynomial time algorithm gives n1εn^{1 - \varepsilon}-approximation for MEB or MBB for every constant ε>0\varepsilon > 0. Moreover, assuming SSEH, we show that it is NP-hard to approximate Minimum kk-Cut and DALkkS to within (2ε)(2 - \varepsilon) factor of the optimum for every constant ε>0\varepsilon > 0. The ratios in our results are essentially tight since trivial algorithms give nn-approximation to both MEB and MBB and efficient 22-approximation algorithms are known for Minimum kk-Cut [SV95] and DALkkS [And07, KS09]. Our first result is proved by combining a technique developed by Raghavendra et al. [RST12] to avoid locality of gadget reductions with a generalization of Bansal and Khot's long code test [BK09] whereas our second result is shown via elementary reductions.Comment: A preliminary version of this work will appear at ICALP 2017 under a different title "Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis

    A Characterization for Decidable Separability by Piecewise Testable Languages

    Full text link
    The separability problem for word languages of a class C\mathcal{C} by languages of a class S\mathcal{S} asks, for two given languages II and EE from C\mathcal{C}, whether there exists a language SS from S\mathcal{S} that includes II and excludes EE, that is, ISI \subseteq S and SE=S\cap E = \emptyset. In this work, we assume some mild closure properties for C\mathcal{C} and study for which such classes separability by a piecewise testable language (PTL) is decidable. We characterize these classes in terms of decidability of (two variants of) an unboundedness problem. From this, we deduce that separability by PTL is decidable for a number of language classes, such as the context-free languages and languages of labeled vector addition systems. Furthermore, it follows that separability by PTL is decidable if and only if one can compute for any language of the class its downward closure wrt. the scattered substring ordering (i.e., if the set of scattered substrings of any language of the class is effectively regular). The obtained decidability results contrast some undecidability results. In fact, for all (non-regular) language classes that we present as examples with decidable separability, it is undecidable whether a given language is a PTL itself. Our characterization involves a result of independent interest, which states that for any kind of languages II and EE, non-separability by PTL is equivalent to the existence of common patterns in II and EE
    corecore