research

Deterministic Time-Space Tradeoffs for k-SUM

Abstract

Given a set of numbers, the kk-SUM problem asks for a subset of kk numbers that sums to zero. When the numbers are integers, the time and space complexity of kk-SUM is generally studied in the word-RAM model; when the numbers are reals, the complexity is studied in the real-RAM model, and space is measured by the number of reals held in memory at any point. We present a time and space efficient deterministic self-reduction for the kk-SUM problem which holds for both models, and has many interesting consequences. To illustrate: * 33-SUM is in deterministic time O(n2lglg(n)/lg(n))O(n^2 \lg\lg(n)/\lg(n)) and space O(nlg(n)lglg(n))O\left(\sqrt{\frac{n \lg(n)}{\lg\lg(n)}}\right). In general, any polylogarithmic-time improvement over quadratic time for 33-SUM can be converted into an algorithm with an identical time improvement but low space complexity as well. * 33-SUM is in deterministic time O(n2)O(n^2) and space O(n)O(\sqrt n), derandomizing an algorithm of Wang. * A popular conjecture states that 3-SUM requires n2o(1)n^{2-o(1)} time on the word-RAM. We show that the 3-SUM Conjecture is in fact equivalent to the (seemingly weaker) conjecture that every O(n.51)O(n^{.51})-space algorithm for 33-SUM requires at least n2o(1)n^{2-o(1)} time on the word-RAM. * For k4k \ge 4, kk-SUM is in deterministic O(nk2+2/k)O(n^{k - 2 + 2/k}) time and O(n)O(\sqrt{n}) space

    Similar works