68 research outputs found

    A parallel downloading algorithm for redundant networks

    Full text link
    In this paper, we study the downloading mechanism of BitTorrent (or BT), a P2P based popular and convenient parallel downloading software tool, point out some of its limitations, and propose an algorithm to improve its performance. In particular, we address the limitations of BT by using neighbours in P2P networks to resolve the redundant copies problem and to optimise the downloading speed. Our preliminary experiments show that the proposed enhancement algorithm works well

    Reliable downloading algorithms for bittorrent-like systems

    Full text link
    In this paper we study a reliable downloading algorithm for BitTorrent-like systems, and attest it in mathematics. BitTorrent-like systems have become immensely popular peer-to-peer file distribution tools in the internet in recent years. We analyze them in theory and point out some of their limitations especially in reliability, and propose an algorithm to resolve these problems by using the redundant copies in neighbors in P2P networks and can further optimize the downloading speed in some condition. Our preliminary simulations show that the proposed reliable algorithm works well; the improved BitTorrent-like systems are very stable and reliable.<br /

    Content-access QoS in peer-to-peer networks using a fast MDS erasure code

    Get PDF
    This paper describes an enhancement of content access Quality of Service in peer to peer (P2P) networks. The main idea is to use an erasure code to distribute the information over the peers. This distribution increases the users’ choice on disseminated encoded data and therefore statistically enhances the overall throughput of the transfer. A performance evaluation based on an original model using the results of a measurement campaign of sequential and parallel downloads in a real P2P network over Internet is presented. Based on a bandwidth distribution, statistical content-access QoS are guaranteed in function of both the content replication level in the network and the file dissemination strategies. A simple application in the context of media streaming is proposed. Finally, the constraints on the erasure code related to the proposed system are analysed and a new fast MDS erasure code is proposed, implemented and evaluated

    Exploiting Semantic Proximity in Peer-to-Peer Content Searching

    Get PDF
    A lot of recent work has dealt with improving performance of content searching in peer-to-peer file sharing systems. In this paper we attack this problem by modifying the overlay topology describing the peer relations in the system. More precisely, we create a semantic overlay, linking nodes that are &quot;semantically close&quot;, by which we mean that they are interested in similar documents. This semantic overlay provides the primary search mechanism, while the initial peer-to-peer system provides the fail-over search mechanism. We focus on implicit approaches for discovering semantic proximity. We evaluate and compare three candidate methods, and review open questions

    Adaptive Replication in Distributed Content Delivery Networks

    Full text link
    We address the problem of content replication in large distributed content delivery networks, composed of a data center assisted by many small servers with limited capabilities and located at the edge of the network. The objective is to optimize the placement of contents on the servers to offload as much as possible the data center. We model the system constituted by the small servers as a loss network, each loss corresponding to a request to the data center. Based on large system / storage behavior, we obtain an asymptotic formula for the optimal replication of contents and propose adaptive schemes related to those encountered in cache networks but reacting here to loss events, and faster algorithms generating virtual events at higher rate while keeping the same target replication. We show through simulations that our adaptive schemes outperform significantly standard replication strategies both in terms of loss rates and adaptation speed.Comment: 10 pages, 5 figure

    A Demand Based Load Balanced Service Replication Model

    Get PDF
    Cloud computing allows service users and providers to access the applications, logical resources and files on any computer with ease. A cloud service has three distinct characteristics that differentiate it from traditional hosting. It is sold on demand, typically by the minute or the hour; it is elastic. It is a way to increase capacity or add capabilities on the fly without investing in new infrastructure, training new personnel, or licensing new software. It not only promises reliable services delivered through next-generation data centers that are built on compute and storage virtualization technologies but also addresses the key issues such as scalability, reliability, fault tolerance and file load balancing. The one way to achieve this is through service replication across different machines coupled with load balancing. Though replication potentially improves fault tolerance, it leads to the problem of ensuring consistency of replicas when certain service is updated or modified. However, fewer replicas also decrease concurrency and the level of service availability. A balanced synchronization between replication mechanism and consistency not only ensures highly reliable and fault tolerant system but also improves system performance significantly. This paper presents a load balancing based service replication model that creates a replica on other servers on the basis of number of service accesses. The simulation results indicate that the proposed model reduces the number of messages exchanged for service replication by 25-55% thus improving the overall system performance significantly. Also in case of CPU load based file replication, it is observed that file access time reduces by 5.56%-7.65%

    Relating Query Popularity and File Replication in the Gnutella Peer-to-Peer Network

    Get PDF
    In this paper, we characterize the user behavior in a peer-to-peer (P2P) file sharing network. Our characterization is based on the results of an extensive passive measurement study of the messages exchanged in the Gnutella P2P file sharing system. Using the data recorded during this measurement study, we analyze which queries a user issues and which files a user shares. The investigation of users queries leads to the characterization of query popularity. Furthermore, the analysis of the files shared by the users leads to a characterization of file replication. As major contribution, we relate query popularity and file replication by an analytical formula characterizing the matching of files to queries. The analytical formula defines a matching probability for each pair of query and file, which depends on the rank of the query with respect query popularity, but is independent of the rank of the file with respect to file replication. We validate this model by conducting a detailed simulation study of a Gnutella-style overlay network and comparing simulation results to the results obtained from the measurement
    • …
    corecore