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Abstract

A lot of recent work has dealt with improving perfor-
mance of content searching in peer-to-peer file sharing sys-
tems. In this paper we attack this problem by modifying the
overlay topology describing the peer relations in the sys-
tem. More precisely, we create a semantic overlay, link-
ing nodes that are “semantically close”, by which we mean
that they are interested in similar documents. This seman-
tic overlay provides the primary search mechanism, while
the initial peer-to-peer system provides the fail-over search
mechanism. We focus on implicit approaches for discov-
ering semantic proximity. We evaluate and compare three
candidate methods, and review open questions.

1 Introduction

The tremendous success of file sharing Peer-to-Peer sys-
tems such as Napster, Gnutella, E-Donkey and KaZaA, mo-
tivates the need to optimise the operation of such systems.
One aspect which has recently received a lot of attention
from the research community is the performance of content
search mechanisms [11, 2, 6].

More specifically, Cohen and Shenker [6] identify doc-
ument replication strategies that minimise the number of
nodes queried before a document is found, assuming re-
quests are submitted to random target nodes. Lv et al. [11]
compare different search strategies for propagating queries
throughout the system, namely flooding, “expanding ring”
or gradual flooding, and random walks. They find that
random walks perform better in minimising the number of
queried nodes. Chawathe et al. [2] consider adapting the
overlay topology so as to favour downloads from nodes with
a high capacity connection to the network.

All three papers deal with search performance improve-
ments which hold independently of any semantic struc-
ture, either in the document collections or in the succes-
sive searches made by individual nodes. In contrast, our
aim in this paper is to exploit semantic structure present in

document sharing systems in order to improve search per-
formance.

This semantic structure can be used in several ways. One
approach pursued by Crespo and Garcia-Molina [7] consists
in explicitly identifying distinct semantic groups of doc-
uments, and building corresponding, possibly overlapping
overlay networks for each group. A document request is
then handled by the overlay to which this document pre-
sumably belongs. Unfortunately, classifying content turns
out to be a difficult problem in practice, often requiring ex-
tensive manual intervention [7, 9].

Sripanidkulchai et al. [12] take an alternative approach,
attempting to cluster nodes sharing similar interests, rather
than similar documents. Another important difference is
that in [12], clustering is performed in an implicit manner,
i.e. without requiring the explicit identification of distinct
groups of users. Nodes then try to obtain documents from
their “semantic neighbours” first, before turning to other
nodes.

The experimental results in [12] suggest that simple,
light-weight techniques exploiting semantic structure in an
implicit manner may yield significant gains in search per-
formance. Our aim in the present paper is to push this state-
ment further, and identify good candidate methods.

We consider the same architecture as in [12], namely
each node maintains a list of semantic neighbours to which
queries are submitted first, before turning to a default search
mechanism if no semantic neighbour could answer the
query. In order to investigate the effectiveness of different
strategies for maintaining such semantic neighbours’ lists,
we develop a synthetic model of semantic structure linking
nodes and documents in the system (Section 2). Section
3 describes our different strategies for maintaining lists of
semantic neighbours. Section 4 discusses the performance
evaluation results. In particular, a “list contamination” phe-
nomenon is identified, and it is shown how the so-called
POPULARITY strategy alleviates it. Before concluding in
Section 6, we review in Section 5 three stimulating issues
raised by the present work.
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2 Modelling semantic structure

We now describe a simple synthetic model of request
generation for documents by users1. This model features
a semantic structure, which in turn induces locality of inter-
est, a property observed in real data traces in [12].

We assume the existence of a number of semantic types,
that are labelled by n ∈ {1, . . . , N}, N denoting the num-
ber of such types. We assume that all documents in the sys-
tem have an associated type. We let dn denote the number
of documents of type n. We also assume that users in the
system can be associated to a semantic type. The number of
users associated with type n is denoted by un.

Each user periodically generates a request. The target
document satisfying that request is determined at random,
according to a distribution which depends on the user’s type
only. This distribution is specified by the following two
components: the probability pn(m) that a request generated
by a type n-user will be targetted at a type m-document, and
the probability qm(k) that a request for a document within
class m will actually target the k-th document in that class.

Zipf’s law is a natural candidate for the distribution
qm(k) (see e.g. [10] for an extensive list of references on
Zipf’s law and its relevance to a number of fields, including
document popularity) and we thus take qm(k) to be pro-
portional to 1/k. We also take the number of documents
in class n, dn, to be proportional to 1/n (within rounding
error), thus imposing a Zipf’s distribution on the class to
which a document belongs.

The most critical component of our request model lies in
the specification of the parameters pn(m). Our choice has
been to select pn(m) so as to meet the following objectives:

(i) Ensure that the frequency of queries to documents
from the whole collection (i.e., without class partition) also
follows a Zipf’s distribution.

(ii) Ensure that for each document class n, a proportion
α of requests to these documents originates from class n-
users, while other user classes all generate an equal propor-
tion (1 − α)/(N − 1) of such requests.

An intuitive description of requirement (ii) above is that
users of a given type will either place a query on a document
in their preferred class, or place a general purpose, indiffer-
entiated query on the global collection. The parameter α
characterizes how strong is the specific interest of users for
documents in their corresponding class: when α = 1/N ,
users of all classes behave indifferently, while at the other
extreme α = 1, users of class n access only documents of
class n. Thus α is naturally interpreted as measuring local-
ity of interest in the system.

A specific choice which meets requirements (i) and (ii)

1In the sequel we use the terms user and node interchangeably.
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Figure 1. Document query frequency per
class

is as follows:
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where the parameter L controls the total number of users,
and Zn is a normalising constant chosen so that

∑
m pn(m)

equals 1.
Figure 1 shows the request frequencies per document,

where documents are sorted by type. This distribution does
not depend on the parameter α.

We are aware of the limitations of this model, and in par-
ticular of the fact that it captures only “pure” specific inter-
ests of users, whereas in reality one certainly expects users
to have several specific interests. However we think it con-
stitutes an adequate starting point, capturing in a parsimo-
nious manner a number of important features.

3 Semantic overlay management

3.1 System model

Each user starts new document searches periodically,
and the requests are generated according to the model of
the previous section. We stress that neither user nor doc-
ument types are exposed to the system. We assume that
all users have a document cache of the same size, managed
according to the Least Recently Used (LRU) policy2. We
assume the availability of some peer-to-peer system sup-
porting semantic–unaware searches. In our experiments we
used expanding-ring search on an unstructured overlay built

2As a result, the degree of replication of a document should be roughly
proportional to its popularity, that is the overall frequency at which it is
requested; see e.g. [6].
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using the SCAMP protocol [8]. In addition, each user main-
tains a list of semantic neighbours. The basic search algo-
rithm then consists in nodes first sending document requests
to all semantic neighbours in their list3. If no semantic
neighbour is able to serve the query, the semantic–unaware
search algorithm is used.

3.2 Candidate strategies

All three strategies described below rely on the follow-
ing basic feedback. After a node has placed a request, it is
provided with a set of nodes possessing the requested docu-
ment, either via the initial phase involving semantic neigh-
bours only, or via the second, semantic–unaware phase.

LRU The most natural strategy consists in placing to the
head of the semantic list that node from which the document
has been obtained. As a result the semantic list contains the
most recently used nodes, and evicts the least recently used
one when the semantic search fails. This is essentially the
method used in [12]. In our simulations, the choice of which
node to download from when several positive replies are
obtained is made so as to minimise delays: a document is
downloaded from the first node to provide a positive answer.

History As we shall see in the next section, semantic links
created using LRU are mostly of two kinds, namely links to
nodes of the same class as the requesting node, created upon
querying a document of the corresponding type, and links to
nodes who provided the requesting node with a popular doc-
ument. The HISTORY approach aims at maintaining seman-
tic links mostly of the first kind, as the latter are less useful.
It requires a node to maintain a counter for each other node
in the system. A node, say i, increments the counter main-
tained for another node, say j, whenever node i requests a
document that node j could provide. The semantic list then
consists of those nodes with the higher counter value.

This method has a number of drawbacks. It is expensive
in terms of storage and of number of messages exchanged
in order to update counter values. In addition, in an envi-
ronment where user types may change over time, counters
may take a long time to adapt to the new user preferences.
For these reasons, it may not constitute a practical solution.
However, it provides us with a benchmark for ideal perfor-
mance, as it is very effective in creating semantic lists pop-
ulated by nodes of the same semantic type only.

Popularity We now describe an approach which, like
HISTORY, aims to create semantic lists populated mostly

3Alternatively, semantic neighbours could be contacted sequentially
until an answer is obtained.

with nodes of the same type, while retaining the simplic-
ity of LRU. This is based on the observation that document
popularity can be inferred from the results of searches. In
the expanding ring searches we are using for the failover
mechanism, the number of nodes answering positively a
query constitutes an estimate of the replication ratio of the
corresponding document, which in turn reflects the popular-
ity of that document.

The method works as follows. The entries in the se-
mantic list have two additional fields: numrep and lastreply.
Numrep gives the number of positive replies that were ob-
tained for the document request for which this node entered
the semantic list. Lastreply gives the last time the node of-
fered to provide a requested document. Lastreply is used
as a lease, when the gap beetwen lastreply and the current
time is greater than a pre-defined threshold, the lease of the
associated node is considered as expired. When a new re-
quest is submitted to the semantic neighbours, the lastreply
entries of those who can answer the query are set to the cur-
rent time. If none of them is able to serve the query, this is
handled by the failover mechanism. In the latter case, let k
denote the corresponding number of answers thus obtained.
The node among those k from which the document is ob-
tained will enter the semantic list of the requesting node,
with numrep and lastreply set to k and the current time re-
spectively, in the following circumstances:

(i) The semantic list is not fully populated yet;
(ii) Some node leases have expired. In that case, the node

with the smallest lastreply is evicted from the list to make
room for the new one;

(iii) The last two conditions are not met, but the largest
numrep in the current list is larger than (or equal to) k, in
which case the node with the largest numrep and the small-
est lastreply is evicted from the list to make room for the
new one.

4 Performance evaluation

Experimental setup Simulations, based on a discrete-
event simulator, proceed as follows. First, a Scamp-based
overlay is created. We then run a warm-up phase, during
which requests are generated and both document caches and
semantic lists are populated. The results we report are gath-
ered during a subsequent phase of searches. Unless explic-
itly stated otherwise, all the results below are obtained for
a system with 2000 nodes, 1000 documents, 20 semantic
types, and a parameter α set to 0.8.

On each node, the cache size is set to 20 documents and
the semantic list size is limited to 10 neighbours. The three
candidate strategies are compared along two metrics: the
semantic hit ratio i.e. the hit ratio obtained using only the
semantic links and the quality of the semantic links, i.e the
proportion of semantic links between nodes belonging to
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Figure 2. LRU semantic hit ratio

the same type.

Semantic hit ratio The distributions of semantic hit ra-
tios per document for LRU, HISTORY and POPULARITY

are depicted on Figures 2, 3 and 4 respectively. For the sake
of comparison, we also ran experiments with semantic lists
populated by nodes chosen uniformly at random from the
whole population. Moving averages, averaged over 40 doc-
uments, of hit ratios for such random lists, as well as LRU,
HISTORY and POPULARITY are reported on Figure 5. The
semantic hit ratio averages for LRU, HISTORY, POPULAR-
ITY and Random are 40%, 65%, 50% and 10% respectively.
Note that these are unweighted averages, taken over the
whole document collection. Such values are indicative of
the relative reduction in numbers of queries performed by
the failover search mechanism. Indeed, while the number
of times a document is requested is proportional to its pop-
ularity, for our replication strategy the number of failover
queries before a document is located is inversely propor-
tional to its popularity [11], and the two biases cancel out.

We also ran experiments with α set to 1/20, which
amounts to making all node types equivalent, and thus re-
moves any locality of interest from the corresponding se-
mantic structure. The corresponding hit ratios were very
close to those resulting from random neighbours, as one
would expect.

All three strategies LRU, HISTORY and POPULARITY

were able to exploit locality of interest when it was present,
and thus improve upon fail-over search mechanisms. We
also note that for all three strategies, the improvement upon
random lists was more pronounced for documents from the
less popular types. This might be explained by the fact that
there are fewer documents of such types, and thus the like-
lihood of finding them in the document caches of nodes
with the same semantic type is increased. the POPULARITY

strategy achieves a good trade-off between the simplicity of
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Figure 3. HISTORY semantic hit ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

Document rank

S
em

an
tic

 h
it 

ra
tio

Figure 4. POPULARITY semantic hit ratio
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Figure 6. Semantic links quality

LRU and the performance of HISTORY.

Semantic link quality The semantic link quality averages
per node type and per strategy are plotted on Figure 6. Re-
call that we define the quality of a semantic link to be 1 if it
is between nodes of the same type, and zero otherwise. As
previously mentioned, we note that LRU semantic links are
contaminated by peers servicing very popular documents.
The HISTORY strategy captures much more accurately the
semantic similarities between nodes, and clusters almost ex-
clusively nodes belonging to the same class. The POPU-
LARITY strategy improves the links quality over LRU at
almost no extra cost.

This data provides additional insight into the hit ratio re-
sults we just described. The poor semantic ratio for unpop-
ular documents of popular classes despite a good clustering
of nodes for the popular classes is due to two factors. First,
the replication of these documents remains low as they are
hardly queried. Second, the number of semantic neighbours
is small compared to the size of popular classes. Semantic
search in such classes could be improved by increasing the
radius of the semantic search, rather than using the semantic
overlay to query one-hop remote neighbours only. How to
set this radius constitutes an interesting problem, to which
we have no satisfactory answer yet.

5 Open issues

Semantic list ordering In the context of our request
model, we found that the POPULARITY algorithm managed
lists of semantic neighbours efficiently. A challenging issue
consists in finding algorithms for managing such lists which
perform well in arbitrary environments.

Such an arbitrary environment can be described by the
following model, which is essentially equivalent to the

model proposed by Cohen et al. [5, 4]. A given node may
place queries (for documents) to any one of n other nodes,
labelled by i ∈ {1, . . . , n}. For each document search,
there exists a corresponding subset of such nodes which
may answer the query. It is assumed that the subsets cor-
responding to successive searches are random, independent
and identically distributed, drawn from an unknown distri-
bution. The list ordering problem then consists in finding an
ordering π(1), . . . , π(n) of the nodes, so as to support effi-
cient search. Assuming we form a semantic list of a given
size s with the first s nodes in the list, and as before forward
queries to all of them, a natural objective consists in maxi-
mizing the probability that queries may be served by either
of these nodes. Alternatively, we may place queries sequen-
tially on the nodes in the list until an answer is obtained, in
which case a natural objective consists in minimising the
expected number of queries thus generated.

Cohen et al. [5] consider a GREEDY strategy, which
consists in selecting π(i) so that the probability that π(i)
answers a query, given it has not been answered by
π(1), . . . , π(i− 1), is maximised. They show that the prob-
ability of a query being answered by any of the first s nodes
under GREEDY is always within (1 − 1/e) of the optimal
probability, while for for sequential search the expected
number of queries performed under GREEDY is within a
factor of 4e/(e − 1) of the expected number of queries un-
der the optimal ordering.

An important issue is then to design list adaptation strate-
gies which achieve similar performance guarantees, while
being more reactive and less expensive than the GREEDY

strategy of [4]. In the case of sequential queries, the Move
To Front rule, in which the first answering node is placed at
the head of the list, achieves an expected number of queries
within π/2 of the optimal, in the special case where for each
query there is only a single node which can treat it (see [3]).
However, when multiple nodes can answer queries, it can
perform arbitrarily badly: we can exhibit instances where
Move To Front has a cost of order O(n) queries while the
optimal cost is of order O(1). A natural candidate would
be to augment the Move To Front rule with a learning step
for each request, consisting in placing an extra query to a
randomly selected node, and moving it to the front of the
list as well if it also answers the query.

Loose coordination of document caches So far we have
only discussed maintenance of the list of pointers to other
nodes. Search performance may actually be enhanced by
modifying the document cache management. In the previ-
ous experiments we were applying LRU for such caches.
However, if we assume that the semantic peering relation-
ships will remain stable over a long period of time, we may
modify the cache replacement policy to take advantage of
this fact. More specifically, when a node uploads a docu-
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ment to one of its semantic neighbours, it therefore learns
that the corresponding document is being replicated there,
and is likely to be accessible from there at a later time. We
suggest that such information could be used to improve co-
ordination between document cache management at distinct
nodes. For instance, the uploading node could move the up-
loaded document to the back of its document cache, effec-
tively freeing cache space. This strategy, which may be de-
scribed as joint Move To Front / Move To Back, may lead
to further improvements on hit ratios. We are planning to
investigate this in a quantitative manner.

Guided search Although our main goal is to exploit se-
mantic properties of requests in a completely implicit man-
ner, it is certainly true that explicit treatment of seman-
tic information should allow performance improvements by
guiding content search. We now describe a light-weight ap-
proach for doing this (see [13] for a related method).

When a node i obtains a document d from another node
j, node i adds j to the front of its list of “semantic neigh-
bours” and tags j’s entry in this list with some semantic
information describing d. Tags can be used afterwards to
guide the search based on semantic similarities between
tags and queries. When a node places a request for a doc-
ument d′, the query is forwarded to one of its neighbours,
chosen with a probability inversely proportional to the se-
mantic distance between the query and the corresponding
tag (see [1] for a description of two semantic distances
in common use in the information retrieval community).
Queries get forwarded in the same manner until they are
served. The question is then to evaluate the performance of
such random walk searches biased by semantic hints. An-
other important problem is to understand in what circum-
stances such semantic hints are going to bring a significant
improvement compared to the implicit methods described
previously.

6 Conclusion

It has been observed that peer-to-peer file sharing traces
exhibit locality of interest [12]. In this paper we inves-
tigate implicit techniques for clustering nodes with sim-
ilar interests in order to improve content search in such
file sharing systems. Each node, based on the history of
query/responses creates a list of semantic neighbours to
which queries are forwarded first before using as a failover
the standard search algorithm.

We consider three candidate strategies for managing se-
mantic lists and evaluate them in the context of a syn-
thetic request model which captures locality of interest. We
find that the lists generated using the LRU strategy can be
contaminated by nodes having served popular documents,
which have no common interest with the requesting nodes.

We investigate HISTORY and POPULARITY strategies to fix
this issue. Our evaluations suggest that the POPULARITY

strategy provides a good trade-off beetwen complexity and
efficiency: it approaches the performance of the expensive
HISTORY strategy while retaining the simplicity of the LRU

mechanism. These conclusions are arrived at in the context
of our specific request model, and we plan to experiment
with real traces shortly in order to confirm, infirm or refine
our observations. In particular, we will try to assess the im-
pact on these results of dynamically changing user interests,
document collections and user populations.

As a debate is currently taking place in the research com-
munity about the relative merits of structured versus un-
structured overlays for content searching [2], it is worth not-
ing that the semantic list approach described here is equally
applicable in both contexts, and irrespective of whether the
search is based on random walks or flooding techniques.
POPULARITY requires an estimate of a requested docu-
ment’s popularity. With flooding techniques, the number
of answers to a query provides such an estimate; when ran-
dom walks are used instead of flooding, the number of steps
walked before the query can be served also provides an es-
timate of the (reciprocal of the) requested document popu-
larity.
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