57,140 research outputs found

    Transformations of Logic Programs with Goals as Arguments

    Full text link
    We consider a simple extension of logic programming where variables may range over goals and goals may be arguments of predicates. In this language we can write logic programs which use goals as data. We give practical evidence that, by exploiting this capability when transforming programs, we can improve program efficiency. We propose a set of program transformation rules which extend the familiar unfolding and folding rules and allow us to manipulate clauses with goals which occur as arguments of predicates. In order to prove the correctness of these transformation rules, we formally define the operational semantics of our extended logic programming language. This semantics is a simple variant of LD-resolution. When suitable conditions are satisfied this semantics agrees with LD-resolution and, thus, the programs written in our extended language can be run by ordinary Prolog systems. Our transformation rules are shown to preserve the operational semantics and termination.Comment: 51 pages. Full version of a paper that will appear in Theory and Practice of Logic Programming, Cambridge University Press, U

    A criterion for separating process calculi

    Get PDF
    We introduce a new criterion, replacement freeness, to discern the relative expressiveness of process calculi. Intuitively, a calculus is strongly replacement free if replacing, within an enclosing context, a process that cannot perform any visible action by an arbitrary process never inhibits the capability of the resulting process to perform a visible action. We prove that there exists no compositional and interaction sensitive encoding of a not strongly replacement free calculus into any strongly replacement free one. We then define a weaker version of replacement freeness, by only considering replacement of closed processes, and prove that, if we additionally require the encoding to preserve name independence, it is not even possible to encode a non replacement free calculus into a weakly replacement free one. As a consequence of our encodability results, we get that many calculi equipped with priority are not replacement free and hence are not encodable into mainstream calculi like CCS and pi-calculus, that instead are strongly replacement free. We also prove that variants of pi-calculus with match among names, pattern matching or polyadic synchronization are only weakly replacement free, hence they are separated both from process calculi with priority and from mainstream calculi.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    Reasoning on Schemata of Formulae

    Full text link
    A logic is presented for reasoning on iterated sequences of formulae over some given base language. The considered sequences, or "schemata", are defined inductively, on some algebraic structure (for instance the natural numbers, the lists, the trees etc.). A proof procedure is proposed to relate the satisfiability problem for schemata to that of finite disjunctions of base formulae. It is shown that this procedure is sound, complete and terminating, hence the basic computational properties of the base language can be carried over to schemata

    Well-definedness of Streams by Transformation and Termination

    Get PDF
    Streams are infinite sequences over a given data type. A stream specification is a set of equations intended to define a stream. We propose a transformation from such a stream specification to a term rewriting system (TRS) in such a way that termination of the resulting TRS implies that the stream specification is well-defined, that is, admits a unique solution. As a consequence, proving well-definedness of several interesting stream specifications can be done fully automatically using present powerful tools for proving TRS termination. In order to increase the power of this approach, we investigate transformations that preserve semantics and well-definedness. We give examples for which the above mentioned technique applies for the ransformed specification while it fails for the original one

    Theories of termination of the contract of employment: the Scylla and Charybidis

    Get PDF
    The principles governing the termination of a contract of employment are problematic. Decisions both in Australia and England continue to reveal an unresolved dilemma between the 'automatic' and 'elective' theories of termination, the outcome of which can have important practical consequences. It is argued that the courts are not consistent in their application of these theories, and that each lacks coherence. For example, neither properly accommodates the principle that a readiness and willingness to work provides consideration for wages. Accordingly, the general rule that a wrongfully dismissed employee is only entitled to damages representing the value of wages not earned during the contractual notice period needs to be reconsidered. This article proposes that an exclusive reliance on either theory will be misconceived. It is further argued that terms of the contract end according to different rules depending on their nature, and that these rules recognise a role for public policy

    Modularity of Convergence and Strong Convergence in Infinitary Rewriting

    Full text link
    Properties of Term Rewriting Systems are called modular iff they are preserved under (and reflected by) disjoint union, i.e. when combining two Term Rewriting Systems with disjoint signatures. Convergence is the property of Infinitary Term Rewriting Systems that all reduction sequences converge to a limit. Strong Convergence requires in addition that redex positions in a reduction sequence move arbitrarily deep. In this paper it is shown that both Convergence and Strong Convergence are modular properties of non-collapsing Infinitary Term Rewriting Systems, provided (for convergence) that the term metrics are granular. This generalises known modularity results beyond metric \infty

    Rewriting and Well-Definedness within a Proof System

    Full text link
    Term rewriting has a significant presence in various areas, not least in automated theorem proving where it is used as a proof technique. Many theorem provers employ specialised proof tactics for rewriting. This results in an interleaving between deduction and computation (i.e., rewriting) steps. If the logic of reasoning supports partial functions, it is necessary that rewriting copes with potentially ill-defined terms. In this paper, we provide a basis for integrating rewriting with a deductive proof system that deals with well-definedness. The definitions and theorems presented in this paper are the theoretical foundations for an extensible rewriting-based prover that has been implemented for the set theoretical formalism Event-B.Comment: In Proceedings PAR 2010, arXiv:1012.455

    THE EVOLVING PHILOSOPHERS PROBLEM - DYNAMIC CHANGE MANAGEMENT

    No full text
    Published versio
    corecore