6 research outputs found

    Rendezvous in Networks in Spite of Delay Faults

    Full text link
    Two mobile agents, starting from different nodes of an unknown network, have to meet at the same node. Agents move in synchronous rounds using a deterministic algorithm. Each agent has a different label, which it can use in the execution of the algorithm, but it does not know the label of the other agent. Agents do not know any bound on the size of the network. In each round an agent decides if it remains idle or if it wants to move to one of the adjacent nodes. Agents are subject to delay faults: if an agent incurs a fault in a given round, it remains in the current node, regardless of its decision. If it planned to move and the fault happened, the agent is aware of it. We consider three scenarios of fault distribution: random (independently in each round and for each agent with constant probability 0 < p < 1), unbounded adver- sarial (the adversary can delay an agent for an arbitrary finite number of consecutive rounds) and bounded adversarial (the adversary can delay an agent for at most c consecutive rounds, where c is unknown to the agents). The quality measure of a rendezvous algorithm is its cost, which is the total number of edge traversals. For random faults, we show an algorithm with cost polynomial in the size n of the network and polylogarithmic in the larger label L, which achieves rendezvous with very high probability in arbitrary networks. By contrast, for unbounded adversarial faults we show that rendezvous is not feasible, even in the class of rings. Under this scenario we give a rendezvous algorithm with cost O(nl), where l is the smaller label, working in arbitrary trees, and we show that \Omega(l) is the lower bound on rendezvous cost, even for the two-node tree. For bounded adversarial faults, we give a rendezvous algorithm working for arbitrary networks, with cost polynomial in n, and logarithmic in the bound c and in the larger label L

    Asynchronous rendezvous with different maps

    Get PDF
    © Springer Nature Switzerland AG 2019. This paper provides a study on the rendezvous problem in which two anonymous mobile entities referred to as robots rA and rB are asked to meet at an arbitrary node of a graph G = (V,E). As opposed to more standard assumptions robots may not be able to visit the entire graph G. Namely, each robot has its own map which is a connected subgraph of G. Such mobility restrictions may be dictated by the topological properties combined with the intrinsic characteristics of robots preventing them from visiting certain edges in E. We consider four different variants of the rendezvous problem introduced in [Farrugia et al. SOFSEM’15] which reflect on restricted maneuverability and navigation ability of rA and rB in G. In the latter, the focus is on models in which robots’ actions are synchronised. The authors prove that one of the maps must be a subgraph of the other. I.e., without this assumption (or some extra knowledge) the rendezvous problem does not have a feasible solution. In this paper, while we keep the containment assumption, we focus on asynchronous robots and the relevant bounds in the four considered variants. We provide some impossibility results and almost tight lower and upper bounds when the solutions are possible
    corecore