5,967 research outputs found

    Image Sampling with Quasicrystals

    Get PDF
    We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.Comment: For a full resolution version of this paper, along with supplementary materials, please visit at http://www.Eyemaginary.com/Portfolio/Publications.htm

    New Deal Art: California

    Get PDF
    Traditionally, the years of the New Deal projects have been treated as a part of the Depression experience with an emphasis on their economic and social dimensions. Until recently, sporadic interest in the art of the period has usually focused on individual artists, not general movements in the art of the time. This has been particularly true in the western states. The purpose of the New Deal Art: California exhibition was to create an overview of the New Deal art projects by bringing together examples of art from the federal art programs in California. New Deal Art: California came about as the result of a chance remark made, by Dr. Francis V. O\u27Connor, Art Historical Consultant, on his first trip to the de Saisset Art Gallery and Museum in 1971. The original exploratory research he did revealed a wealth of information about California\u27s contribution to the Works Progress Administration\u27s Federal Art Project and the Treasury Programs. Dr. O\u27Connor\u27s initial work helped provide the foundation for two years of subsequent research into the historical and aesthetic climate that gave birth to New ,Deal Art in California. The results of our explorations, in both quantity and quality of resources, has far exceeded our original expectations.https://scholarcommons.scu.edu/faculty_books/1367/thumbnail.jp

    Automated pebble mosaic stylization of images

    Get PDF
    Digital mosaics have usually used regular tiles, simulating the historical "tessellated" mosaics. In this paper, we present a method for synthesizing pebble mosaics, a historical mosaic style in which the tiles are rounded pebbles. We address both the tiling problem, where pebbles are distributed over the image plane so as to approximate the input image content, and the problem of geometry, creating a smooth rounded shape for each pebble. We adapt SLIC, simple linear iterative clustering, to obtain elongated tiles conforming to image content, and smooth the resulting irregular shapes into shapes resembling pebble cross-sections. Then, we create an interior and exterior contour for each pebble and solve a Laplace equation over the region between them to obtain height-field geometry. The resulting pebble set approximates the input image while presenting full geometry that can be rendered and textured for a highly detailed representation of a pebble mosaic

    Interactive Illustration of Collage for Children with Folktale E-book

    Get PDF
    It is always challenging to teach children foreign languages, due to the difficulty of learning and their short attention span. To address the challenge and take advantage of the popularity of touchable tablets and smartphones, we propose an educational folktale e-book (EFE-Book) application with an interactive illustratable tool. EFE-Book is developed to teach preschool children to learn foreign languages by telling folktales with illustrations. To encourage effective learning, EFE-Book provides an interactive collage tool that enables users to create collage-based illustrations by hand. We propose a Voronoi diagram based approach to model paper tiles for the development of EFE-Book. With EFE-Book, the user can create colored paper tiles and attach them to the predesigned sketch through touch interface, such as Apple iPad

    A framework for realistic 3D tele-immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite differ- ent from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experi- ence of talking in person. Several causes for these differences have been identified and we propose inspiring and innova- tive solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational expe- rience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic ex- periences to a multitude of users that for them will feel much more similar to having face to face meetings than the expe- rience offered by conventional teleconferencing systems

    Colored fused filament fabrication

    Full text link
    Fused filament fabrication is the method of choice for printing 3D models at low cost and is the de-facto standard for hobbyists, makers, and schools. Unfortunately, filament printers cannot truly reproduce colored objects. The best current techniques rely on a form of dithering exploiting occlusion, that was only demonstrated for shades of two base colors and that behaves differently depending on surface slope. We explore a novel approach for 3D printing colored objects, capable of creating controlled gradients of varying sharpness. Our technique exploits off-the-shelves nozzles that are designed to mix multiple filaments in a small melting chamber, obtaining intermediate colors once the mix is stabilized. We apply this property to produce color gradients. We divide each input layer into a set of strata, each having a different constant color. By locally changing the thickness of the stratum, we change the perceived color at a given location. By optimizing the choice of colors of each stratum, we further improve quality and allow the use of different numbers of input filaments. We demonstrate our results by building a functional color printer using low cost, off-the-shelves components. Using our tool a user can paint a 3D model and directly produce its physical counterpart, using any material and color available for fused filament fabrication

    Image Analysis and Automatic Composition of Ceramic Mosaics

    Get PDF
    The automatic composition of ceramic mosaics by computer vision techniques is studied. In the proposed system, images are reproduced onto a ceramic mosaic based on image resolution, ceramic tile's dimensions, available colours. A camera takes images of ceramic tiles to be used and guides a robot to pick the correct tile and place it at the right position in the mosaic. Colour-based segmentation and colour calibration are needed to select and extract the correct tile according to the colour to be reproduced. The input image is quantized and dithered to find the best representation given the available tiles. Issues related with the interface with robotic system are addressed. [DOI: 10.1685 / CSC06103] About DO

    Visualization and Correction of Automated Segmentation, Tracking and Lineaging from 5-D Stem Cell Image Sequences

    Get PDF
    Results: We present an application that enables the quantitative analysis of multichannel 5-D (x, y, z, t, channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. Conclusions: By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. There is a pressing need for visualization and analysis tools for 5-D live cell image data. We combine accurate unsupervised processes with an intuitive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.Comment: BioVis 2014 conferenc

    The Application of the Montage Image Mosaic Engine To The Visualization Of Astronomical Images

    Get PDF
    The Montage Image Mosaic Engine was designed as a scalable toolkit, written in C for performance and portability across *nix platforms, that assembles FITS images into mosaics. The code is freely available and has been widely used in the astronomy and IT communities for research, product generation and for developing next-generation cyber-infrastructure. Recently, it has begun to finding applicability in the field of visualization. This has come about because the toolkit design allows easy integration into scalable systems that process data for subsequent visualization in a browser or client. And it includes a visualization tool suitable for automation and for integration into Python: mViewer creates, with a single command, complex multi-color images overlaid with coordinate displays, labels, and observation footprints, and includes an adaptive image histogram equalization method that preserves the structure of a stretched image over its dynamic range. The Montage toolkit contains functionality originally developed to support the creation and management of mosaics but which also offers value to visualization: a background rectification algorithm that reveals the faint structure in an image; and tools for creating cutout and down-sampled versions of large images. Version 5 of Montage offers support for visualizing data written in HEALPix sky-tessellation scheme, and functionality for processing and organizing images to comply with the TOAST sky-tessellation scheme required for consumption by the World Wide Telescope (WWT). Four online tutorials enable readers to reproduce and extend all the visualizations presented in this paper.Comment: 16 pages, 9 figures; accepted for publication in the PASP Special Focus Issue: Techniques and Methods for Astrophysical Data Visualizatio
    corecore