410 research outputs found

    DIPPAS: A Deep Image Prior PRNU Anonymization Scheme

    Get PDF
    Source device identification is an important topic in image forensics since it allows to trace back the origin of an image. Its forensics counter-part is source device anonymization, that is, to mask any trace on the image that can be useful for identifying the source device. A typical trace exploited for source device identification is the Photo Response Non-Uniformity (PRNU), a noise pattern left by the device on the acquired images. In this paper, we devise a methodology for suppressing such a trace from natural images without significant impact on image quality. Specifically, we turn PRNU anonymization into an optimization problem in a Deep Image Prior (DIP) framework. In a nutshell, a Convolutional Neural Network (CNN) acts as generator and returns an image that is anonymized with respect to the source PRNU, still maintaining high visual quality. With respect to widely-adopted deep learning paradigms, our proposed CNN is not trained on a set of input-target pairs of images. Instead, it is optimized to reconstruct the PRNU-free image from the original image under analysis itself. This makes the approach particularly suitable in scenarios where large heterogeneous databases are analyzed and prevents any problem due to lack of generalization. Through numerical examples on publicly available datasets, we prove our methodology to be effective compared to state-of-the-art techniques

    The Science of Disguise

    Get PDF
    Technological advances have made digital cameras ubiquitous, to the point where it is difficult to purchase even a mobile phone without one. Coupled with similar advances in face recognition technology, we are seeing a marked increase in the use of biometrics, such as face recognition, to identify individuals. However, remaining unrecognized in an era of ubiquitous camera surveillance remains desirable to some citizens, notably those concerned with privacy. Since biometrics are an intrinsic part of a person\u27s identity, it may be that the only means of evading detection is through disguise. We have created a comprehensive database of high-quality imagery that will allow us to explore the effectiveness of disguise as an approach to avoiding unwanted recognition. Using this database, we have evaluated the performance of a variety of automated machine-based face recognition algorithms on disguised faces. Our data-driven analysis finds that for the sample population contained in our database: (1) disguise is effective; (2) there are significant performance differences between individuals and demographic groups; and (3) elements including coverage, contrast, and disguise combination are determinative factors in the success or failure of face recognition algorithms on an image. In this dissertation, we examine the present-day uses of face recognition and their interplay with privacy concerns. We sketch the capabilities of a new database of facial imagery, unique both in the diversity of the imaged population, and in the diversity and consistency of disguises applied to each subject. We provide an analysis of disguise performance based on both a highly-rated commercial face recognition system and an open-source algorithm available to the FR community. Finally, we put forth hypothetical models for these results, and provide insights into the types of disguises that are the most effective at defeating facial recognition for various demographic populations. As cameras become more sophisticated and algorithms become more advanced, disguise may become less effective. For security professionals, this is a laudable outcome; privacy advocates will certainly feel differently

    The Role of Identification in Law Enforcement: An Historical Adventure

    Get PDF

    Detecting Forgery: Forensic Investigation of Documents

    Get PDF
    Detecting Forgery reveals the complete arsenal of forensic techniques used to detect forged handwriting and alterations in documents and to identify the authorship of disputed writings. Joe Nickell looks at famous cases such as Clifford Irving\u27s autobiography of Howard Hughes and the Mormon papers of document dealer Mark Hoffman, as well as cases involving works of art. Detecting Forgery is a fascinating introduction to the growing field of forensic document examination and forgery detection. Seldom does a book about forgery come along containing depth of subject matter in addition to presenting clear and understandable information. This book has both, plus a readability that is accessible to those studying questioned documents as well as seasoned experts. -- Journal of Forensic Identification The author\u27s expertise in historical documents is unmistakably evident throughout the book. Once I began reading, I found it hard to put down. -- Journal of Questioned Document Examination Guides the reader through various methods and techniques of identifying fakes and phone manuscripts. -- Manchester (KY) Enterprisehttps://uknowledge.uky.edu/upk_legal_studies/1000/thumbnail.jp

    Deep Models and Shortwave Infrared Information to Detect Face Presentation Attacks

    Full text link
    This paper addresses the problem of face presentation attack detection using different image modalities. In particular, the usage of short wave infrared (SWIR) imaging is considered. Face presentation attack detection is performed using recent models based on Convolutional Neural Networks using only carefully selected SWIR image differences as input. Conducted experiments show superior performance over similar models acting on either color images or on a combination of different modalities (visible, NIR, thermal and depth), as well as on a SVM-based classifier acting on SWIR image differences. Experiments have been carried on a new public and freely available database, containing a wide variety of attacks. Video sequences have been recorded thanks to several sensors resulting in 14 different streams in the visible, NIR, SWIR and thermal spectra, as well as depth data. The best proposed approach is able to almost perfectly detect all impersonation attacks while ensuring low bonafide classification errors. On the other hand, obtained results show that obfuscation attacks are more difficult to detect. We hope that the proposed database will foster research on this challenging problem. Finally, all the code and instructions to reproduce presented experiments is made available to the research community

    Deploying the Secret Police: The Use of Algorithms in the Criminal Justice System

    Get PDF
    Algorithms saturate our lives today; from curated song lists to recommending “friends” and news feeds, they factor into some of the most human aspects of decision-making, tapping into preferences based on an ever-growing amount of data. Regardless of whether the algorithm pertains to routing you around traffic jams or finding your next dinner, there is little regulation and even less transparency regarding just how these algorithms work. Paralleling this societal adoption, the criminal justice system now employs algorithms in some of the most important aspects of investigation and decision-making. The lack of oversight is abundantly apparent in the criminal justice system where various algorithm-based tools are now routinely deployed to investigate, prosecute, and sentence offenders. In the absence of suitable safeguards, decisions affecting life and liberty are contained in an impenetrable “black box.

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Unifying the Visible and Passive Infrared Bands: Homogeneous and Heterogeneous Multi-Spectral Face Recognition

    Get PDF
    Face biometrics leverages tools and technology in order to automate the identification of individuals. In most cases, biometric face recognition (FR) can be used for forensic purposes, but there remains the issue related to the integration of technology into the legal system of the court. The biggest challenge with the acceptance of the face as a modality used in court is the reliability of such systems under varying pose, illumination and expression, which has been an active and widely explored area of research over the last few decades (e.g. same-spectrum or homogeneous matching). The heterogeneous FR problem, which deals with matching face images from different sensors, should be examined for the benefit of military and law enforcement applications as well. In this work we are concerned primarily with visible band images (380-750 nm) and the infrared (IR) spectrum, which has become an area of growing interest.;For homogeneous FR systems, we formulate and develop an efficient, semi-automated, direct matching-based FR framework, that is designed to operate efficiently when face data is captured using either visible or passive IR sensors. Thus, it can be applied in both daytime and nighttime environments. First, input face images are geometrically normalized using our pre-processing pipeline prior to feature-extraction. Then, face-based features including wrinkles, veins, as well as edges of facial characteristics, are detected and extracted for each operational band (visible, MWIR, and LWIR). Finally, global and local face-based matching is applied, before fusion is performed at the score level. Although this proposed matcher performs well when same-spectrum FR is performed, regardless of spectrum, a challenge exists when cross-spectral FR matching is performed. The second framework is for the heterogeneous FR problem, and deals with the issue of bridging the gap across the visible and passive infrared (MWIR and LWIR) spectrums. Specifically, we investigate the benefits and limitations of using synthesized visible face images from thermal and vice versa, in cross-spectral face recognition systems when utilizing canonical correlation analysis (CCA) and locally linear embedding (LLE), a manifold learning technique for dimensionality reduction. Finally, by conducting an extensive experimental study we establish that the combination of the proposed synthesis and demographic filtering scheme increases system performance in terms of rank-1 identification rate

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field
    • …
    corecore