4 research outputs found

    Performance Evaluation of Wavelet De-Noising Schemes for Suppression of Power Line Noise in Electrocardiogram Signals

    Get PDF
    Power line noise introduces distortions to recorded electrocardiogram (ECG) signals. These distortions compromise the integrity and negatively affect the interpretation of the ECG signals. Despite the fact that the amplifiers used in biomedical signal processing have high common mode rejection ratio (CMRR), ECG recordings are still often corrupted with residual Power Line Interference (PLI) noise. Further improvement in the hardware solutions do not have significant achievements in PLI noise suppression but rather introduce other adverse effects. Software approach is necessary to refine ECG data. Evaluation of PLI noise suppression in ECG signal in the wavelet domain is presented. The performance of the Hard Threshold Shrinkage Function (HTSF), the Soft Threshold Shrinkage Function (STSF), the Hyperbola Threshold Shrinkage Function (HYTSF), the Garrote Threshold Shrinkage Function (GTSF), and the Modified Garrote Threshold Shrinkage Function (MGTSF) for the suppression of PLI noise are evaluated and compared with the aid of an algorithm. The optimum tuning constant for the Modified Garrote Threshold Shrinkage Function (MGTSF) is found to be 1.18 for PLI noise. GTSF is found to have best performance closely followed by MGTSF in term of filtering Gain. HTSF recorded the lowest Gain. Filtering against PLI noise in the wavelet domain preserves the key features of the signal such as the QRS complex

    A Segmental Approach with SWT Technique for Denoising the EOG Signal

    Get PDF
    The Electrooculogram (EOG) signal is often contaminated with artifacts and power-line while recording. It is very much essential to denoise the EOG signal for quality diagnosis. The present study deals with denoising of noisy EOG signals using Stationary Wavelet Transformation (SWT) technique by two different approaches, namely, increasing segments of the EOG signal and different equal segments of the EOG signal. For performing the segmental denoising analysis, an EOG signal is simulated and added with controlled noise powers of 5 dB, 10 dB, 15 dB, 20 dB, and 25 dB so as to obtain five different noisy EOG signals. The results obtained after denoising them are extremely encouraging. Root Mean Square Error (RMSE) values between reference EOG signal and EOG signals with noise powers of 5 dB, 10 dB, and 15 dB are very less when compared with 20 dB and 25 dB noise powers. The findings suggest that the SWT technique can be used to denoise the noisy EOG signal with optimum noise powers ranging from 5 dB to 15 dB. This technique might be useful in quality diagnosis of various neurological or eye disorders

    Development of ECG and EMG platform with IMU to eliminate the motion artifacts found in measurements

    Get PDF
    The long term measurement and analysis of electrophysiological parameters is crucial for diagnosis of chronic diseases, and to monitor critical health parameters. It is also very important to monitor physical fitness improvement, or degradation level, of human beings where physical fitness is entirely critical for their work, or of more vulnerable members of society such as senior citizens and the sick. The state-of-the-art technological developments are leading to the use of artificial intelligence in the continuous monitoring and identification of life-threatening events in the daily life of ordinary people. However, these ambulatory measurements of electrophysiological parameters leads to drastic motion artifacts because of the test subject’s movements. Therefore, there is a dire need for the development of both hardware and software solutions to address this challenge. The scope of this thesis is to develop a hardware platform, by using off-the-shelf discrete and IC electronic components, to measure two electrophysiological parameters, electrocardiogram (ECG) and electromyogram (EMG), with an additional motion sensor inertial measurement unit (IMU) comprising nine degrees of freedom. The ECG, EMG and IMU data will be collected using the developed measurement platform from various predefined day-to-day routine activity events. A Bluetooth interface will be developed to transmit the data wirelessly, and record it on a laptop for further real-time processing. The resources of the electrical workshop and measurement lab at Aalto University will be used for the development, assembly, testing and finally for research of the measurement platform. The second aspect of the study is to prepare, process and analyze the recorded ECG and EMG data by using MATLAB. Various filtering, denoising, processing and analysis algorithms will be developed and executed to extract the features of the ECG and EMG waveform structures. Finally, graphical representations will be made for the resulting outputs of the aforementioned techniques

    Classification of Arrhythmia from ECG Signals using MATLAB

    Get PDF
    An Electrocardiogram (ECG) is defined as a test that is performed on the heart to detect any abnormalities in the cardiac cycle. Automatic classification of ECG has evolved as an emerging tool in medical diagnosis for effective treatments. The work proposed in this paper has been implemented using MATLAB. In this paper, we have proposed an efficient method to classify the ECG into normal and abnormal as well as classify the various abnormalities. To brief it, after the collection and filtering the ECG signal, morphological and dynamic features from the signal were obtained which was followed by two step classification method based on the traits and characteristic evaluation. ECG signals in this work are collected from MIT-BIH, AHA, ESC, UCI databases. In addition to this, this paper also provides a comparative study of various methods proposed via different techniques. The proposed technique used helped us process, analyze and classify the ECG signals with an accuracy of 97% and with good convenience
    corecore