66 research outputs found

    Reversible visible watermarking for H.264/AVC encoded video

    Get PDF
    Visible watermarked images and videos are generally used to convey ownership information. However, the visible watermark is generally irreversible and thus authenticated users cannot recover the original image or video quality after watermark extraction. This poses a limitation in various scenarios including military, law and medical applications. This paper presents a novel reversible visible watermarking scheme for H.264/AVC encoded video sequences. The proposed approach reversibly embeds the residual information that will then be used by the decoder to recover the original image. The residual information is losslessly compressed using the ZLib Deflector algorithm to minimize the information to be embedded. The compressed information is then encrypted using the 128-bit Advanced Encryption Standard (AES). Simulation results clearly demonstrate the superiority of the proposed scheme to current state of the art where Peak Signal-to-Noise Ration (PSNR) gains of up to 7 dB were achieved.peer-reviewe

    Reversible visible watermarking for H.264/AVC encoded video

    Full text link

    Development of variable voltage variable frequency drive system for induction motor speed control

    Get PDF
    This project describes the development of a Variable Voltage Variable Frequency (VVVF) system that controls the speed of Induction Motor (IM) at specific speed. Texas Instrument C2000 Microcontroller (TMS320F28335) has been used in this project as the interface between the control design with the IM. The Texas Instrument microcontroller has been combined with the MATLAB/Simulink and the VVVF system as the communication interface for processing the speed control system. The combination between power electronic circuits and microcontroller along with variable voltage variable frequency (VVVF) technique is able to control the target speed of IM. The target value of VVVF is implemented inside Lookup table and has been combined with the Proportional Integral (PI) speed control that generates the signal into the sinusoidal pulse width modulation (SPWM) for inverter operation. The SPWM signal is produced from the microcontroller with the instruction from MATLAB/Simulink, where the controller performs the output of the motor speed. The PI speed control receives the output of a closed loop feedback system from the motor speed and the error signal is reduced to achieve the value of desired speed reference. In the conclusion, the VVVF closed loop system is very useful to control the desired speed of motor at different variable voltage and variable frequency value. As collected for the results, its show, the VVVF with PI speed control can achieve the actual speed for the IM at 1297rpm and 1499rpm when the reference speeds have been set at 1300rpm and 1500rpm respectively. At the end it can be concluded that the VVVF combined with microcontroller have created an ecosystem for speed control that have achieved the objectives

    A comparison of discrete cosine transform and discrete wavelet transform algorithm in watermarking against common attacks

    Get PDF
    Digital watermarking is a technique to embed additional data to digital images, audios and videos without affecting the quality of the original image. Watermark can be extracted for ownership verification or authentication. Currently, there is no comparison documented done between Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). In this report, the DCT watermarking algorithms and DWT watermarking algorithms were compared based on robustness and imperceptibility criteria. With DCT, the watermark bits were embedded into the mid-band coefficients of the DCT in the cover image where the DWT algorithm was embedded the watermark bits into the horizontal and vertical sub-bands of DWT in the cover image. Experimental results had shown that the watermark is robust to geometric attacks and removal attacks. DCT and DWT are compared with regard to peak signal to noise ratio (PSNR), Mean Square Error (MSE) and Normalized Correlation (NC). The PSNR value of the watermarked Lena image in DWT is 47, higher than the DCT which is 44. The Normalized Correlation (NC) also had clarified that the extracted watermark in DWT 0.9964 is greater than the extracted watermark in DCT 0.2057. Thus, the results had indicated that the DWT gives better image quality than DCT

    Data hiding in multimedia - theory and applications

    Get PDF
    Multimedia data hiding or steganography is a means of communication using subliminal channels. The resource for the subliminal communication scheme is the distortion of the original content that can be tolerated. This thesis addresses two main issues of steganographic communication schemes: 1. How does one maximize the distortion introduced without affecting fidelity of the content? 2. How does one efficiently utilize the resource (the distortion introduced) for communicating as many bits of information as possible? In other words, what is a good signaling strategy for the subliminal communication scheme? Close to optimal solutions for both issues are analyzed. Many techniques for the issue for maximizing the resource, viz, the distortion introduced imperceptibly in images and video frames, are proposed. Different signaling strategies for steganographic communication are explored, and a novel signaling technique employing a floating signal constellation is proposed. Algorithms for optimal choices of the parameters of the signaling technique are presented. Other application specific issues like the type of robustness needed are taken into consideration along with the established theoretical background to design optimal data hiding schemes. In particular, two very important applications of data hiding are addressed - data hiding for multimedia content delivery, and data hiding for watermarking (for proving ownership). A robust watermarking protocol for unambiguous resolution of ownership is proposed

    Digital watermarking and novel security devices

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    Robust digital watermarking techniques for multimedia protection

    Get PDF
    The growing problem of the unauthorized reproduction of digital multimedia data such as movies, television broadcasts, and similar digital products has triggered worldwide efforts to identify and protect multimedia contents. Digital watermarking technology provides law enforcement officials with a forensic tool for tracing and catching pirates. Watermarking refers to the process of adding a structure called a watermark to an original data object, which includes digital images, video, audio, maps, text messages, and 3D graphics. Such a watermark can be used for several purposes including copyright protection, fingerprinting, copy protection, broadcast monitoring, data authentication, indexing, and medical safety. The proposed thesis addresses the problem of multimedia protection and consists of three parts. In the first part, we propose new image watermarking algorithms that are robust against a wide range of intentional and geometric attacks, flexible in data embedding, and computationally fast. The core idea behind our proposed watermarking schemes is to use transforms that have different properties which can effectively match various aspects of the signal's frequencies. We embed the watermark many times in all the frequencies to provide better robustness against attacks and increase the difficulty of destroying the watermark. The second part of the thesis is devoted to a joint exploitation of the geometry and topology of 3D objects and its subsequent application to 3D watermarking. The key idea consists of capturing the geometric structure of a 3D mesh in the spectral domain by computing the eigen-decomposition of the mesh Laplacian matrix. We also use the fact that the global shape features of a 3D model may be reconstructed using small low-frequency spectral coefficients. The eigen-analysis of the mesh Laplacian matrix is, however, prohibitively expensive. To lift this limitation, we first partition the 3D mesh into smaller 3D sub-meshes, and then we repeat the watermark embedding process as much as possible in the spectral coefficients of the compressed 3D sub-meshes. The visual error of the watermarked 3D model is evaluated by computing a nonlinear visual error metric between the original 3D model and the watermarked model obtained by our proposed algorithm. The third part of the thesis is devoted to video watermarking. We propose robust, hybrid scene-based MPEG video watermarking techniques based on a high-order tensor singular value decomposition of the video image sequences. The key idea behind our approaches is to use the scene change analysis to embed the watermark repeatedly in a fixed number of the intra-frames. These intra-frames are represented as 3D tensors with two dimensions in space and one dimension in time. We embed the watermark information in the singular values of these high-order tensors, which have good stability and represent the video properties. Illustration of numerical experiments with synthetic and real data are provided to demonstrate the potential and the much improved performance of the proposed algorithms in multimedia watermarking
    corecore