14,434 research outputs found

    Enabling collaboration in virtual reality navigators

    Get PDF
    In this paper we characterize a feature superset for Collaborative Virtual Reality Environments (CVRE), and derive a component framework to transform stand-alone VR navigators into full-fledged multithreaded collaborative environments. The contributions of our approach rely on a cost-effective and extensible technique for loading software components into separate POSIX threads for rendering, user interaction and network communications, and adding a top layer for managing session collaboration. The framework recasts a VR navigator under a distributed peer-to-peer topology for scene and object sharing, using callback hooks for broadcasting remote events and multicamera perspective sharing with avatar interaction. We validate the framework by applying it to our own ALICE VR Navigator. Experimental results show that our approach has good performance in the collaborative inspection of complex models.Postprint (published version

    Group-Slicer: A collaborative extension of 3D-Slicer

    Get PDF
    AbstractIn this paper, we describe a first step towards a collaborative extension of the well-known 3D-Slicer; this platform is nowadays used as a standalone tool for both surgical planning and medical intervention. We show how this tool can be easily modified to make it collaborative so that it may constitute an integrated environment for expertise exchange as well as a useful tool for academic purposes

    Medical Data Visual Synchronization and Information interaction Using Internet-based Graphics Rendering and Message-oriented Streaming

    Get PDF
    The rapid technology advances in medical devices make possible the generation of vast amounts of data, which contain massive quantities of diagnostic information. Interactively accessing and sharing the acquired data on the Internet is critically important in telemedicine. However, due to the lack of efficient algorithms and high computational cost, collaborative medical data exploration on the Internet is still a challenging task in clinical settings. Therefore, we develop a web-based medical image rendering and visual synchronization software platform, in which novel algorithms are created for parallel data computing and image feature enhancement, where Node.js and Socket.IO libraries are utilized to establish bidirectional connections between server and clients in real time. In addition, we design a new methodology to stream medical information among all connected users, whose identities and input messages can be automatically stored in database and extracted in web browsers. The presented software framework will provide multiple medical practitioners with immediate visual feedback and interactive information in applications such as collaborative therapy planning, distributed treatment, and remote clinical health care

    ImageJ2: ImageJ for the next generation of scientific image data

    Full text link
    ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. Due to these new and emerging challenges in scientific imaging, ImageJ is at a critical development crossroads. We present ImageJ2, a total redesign of ImageJ offering a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. ImageJ2 provides a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs
    corecore