429 research outputs found

    Agricultural Drought Monitoring in Kenya Using Evapotranspiration Derived from Remote Sensing and Reanalysis Data

    Get PDF
    More than half of the people in sub-Saharan Africa live on less than US$ 1.25 per day, and nearly 30% do not receive sufficient nourishment to maintain daily health (UN, 2009a). These figures are expected to rise as a result of the recent global financial crisis that has led to an increase in food prices. Food for Peace (FFP), the program that administers more than 85% of U.S. international food aid, recently reported that the seven largest recipient countries of food aid worldwide are in sub-Saharan Africa (FFP, 2010). In Kenya, the fifth largest recipient of food aid from FFP and a country highly dependent on rainfed agriculture, below-average precipitation in 2009 led to a 20% reduction in maize production and a 100% increase in domestic maize prices (FEWS NET, 2009). Given these sorts of climatic shocks, it is imperative that mitigation strategies be developed for sub-Saharan Africa and other regions of the developing world to improve the international and national response to impending food crises. Crop monitoring is an important tool used by national agricultural offices and other stakeholders to inform food security analyses and agricultural drought mitigation. Remote sensing and surface reanalysis data facilitate efficient and cost-effective approaches to measuring determinants of agricultural drought. In this chapter, we explore how remotely sensed estimates of actual evapotranspiration (ETa) can be integrated with surface reanalysis data to augment agricultural drought monitoring systems. Although water availability is important throughout every stage of crop development, from germination to harvest, crops are most sensitive to moisture deficits during the reproductive stages (Shanahan and Nielsen, 1987). A study that analyzed maize, for example, showed that a 1% decline in seasonal ETa led to an average loss of 1.5% in crop yield, whereas water stress in the same proportion concentrated during the reproductive phases led to a 2.6% decline in crop yield (Stegman, 1982). Agricultural drought can therefore be defined as inadequate soil water availability, particularly during the reproductive phase, caused by low precipitation, insufficient water-holding capacity in the root zone of the soil, and/or high atmospheric water demand (potential evapotranspiration, ETp), which results in a reduction in crop yield. Agricultural droughts differ in timescale and impact from shorter-term meteorological droughts, which are characterized by negative precipitation anomalies on the order of days to weeks, and the longer-term negative runoff and water storage anomalies that characterize hydrological drought (Dracup et al., 1980)

    Agricultural Drought Monitoring in Kenya Using Evapotranspiration Derived from Remote Sensing and Reanalysis Data

    Get PDF
    More than half of the people in sub-Saharan Africa live on less than US$ 1.25 per day, and nearly 30% do not receive sufficient nourishment to maintain daily health (UN, 2009a). These figures are expected to rise as a result of the recent global financial crisis that has led to an increase in food prices. Food for Peace (FFP), the program that administers more than 85% of U.S. international food aid, recently reported that the seven largest recipient countries of food aid worldwide are in sub-Saharan Africa (FFP, 2010). In Kenya, the fifth largest recipient of food aid from FFP and a country highly dependent on rainfed agriculture, below-average precipitation in 2009 led to a 20% reduction in maize production and a 100% increase in domestic maize prices (FEWS NET, 2009). Given these sorts of climatic shocks, it is imperative that mitigation strategies be developed for sub-Saharan Africa and other regions of the developing world to improve the international and national response to impending food crises. Crop monitoring is an important tool used by national agricultural offices and other stakeholders to inform food security analyses and agricultural drought mitigation. Remote sensing and surface reanalysis data facilitate efficient and cost-effective approaches to measuring determinants of agricultural drought. In this chapter, we explore how remotely sensed estimates of actual evapotranspiration (ETa) can be integrated with surface reanalysis data to augment agricultural drought monitoring systems. Although water availability is important throughout every stage of crop development, from germination to harvest, crops are most sensitive to moisture deficits during the reproductive stages (Shanahan and Nielsen, 1987). A study that analyzed maize, for example, showed that a 1% decline in seasonal ETa led to an average loss of 1.5% in crop yield, whereas water stress in the same proportion concentrated during the reproductive phases led to a 2.6% decline in crop yield (Stegman, 1982). Agricultural drought can therefore be defined as inadequate soil water availability, particularly during the reproductive phase, caused by low precipitation, insufficient water-holding capacity in the root zone of the soil, and/or high atmospheric water demand (potential evapotranspiration, ETp), which results in a reduction in crop yield. Agricultural droughts differ in timescale and impact from shorter-term meteorological droughts, which are characterized by negative precipitation anomalies on the order of days to weeks, and the longer-term negative runoff and water storage anomalies that characterize hydrological drought (Dracup et al., 1980)

    An automated approach to map winter cropped area of smallholder farms across large scales using MODIS imagery

    Get PDF
    Fine-scale agricultural statistics are an important tool for understanding trends in food production and their associated drivers, yet these data are rarely collected in smallholder systems. These statistics are particularly important for smallholder systems given the large amount of fine-scale heterogeneity in production that occurs in these regions. To overcome the lack of ground data, satellite data are often used to map fine-scale agricultural statistics. However, doing so is challenging for smallholder systems because of (1) complex sub-pixel heterogeneity; (2) little to no available calibration data; and (3) high amounts of cloud cover as most smallholder systems occur in the tropics. We develop an automated method termed the MODIS Scaling Approach (MSA) to map smallholder cropped area across large spatial and temporal scales using MODIS Enhanced Vegetation Index (EVI) satellite data. We use this method to map winter cropped area, a key measure of cropping intensity, across the Indian subcontinent annually from 2000-2001 to 2015-2016. The MSA defines a pixel as cropped based on winter growing season phenology and scales the percent of cropped area within a single MODIS pixel based on observed EVI values at peak phenology. We validated the result with eleven high-resolution scenes (spatial scale of 5 × 5 m2 or finer) that we classified into cropped versus non-cropped maps using training data collected by visual inspection of the high-resolution imagery. The MSA had moderate to high accuracies when validated using these eleven scenes across India (R2 ranging between 0.19 and 0.89 with an overall R2 of 0.71 across all sites). This method requires no calibration data, making it easy to implement across large spatial and temporal scales, with 100% spatial coverage due to the compositing of EVI to generate cloud-free data sets. The accuracies found in this study are similar to those of other studies that map crop production using automated methods and use no calibration data. To aid research on agricultural production at fine spatial scales in India, we make our annual winter crop maps from 2000-2001 to 2015-2016 at 1 × 1 km2 produced in this study publically available through the NASA Socioeconomic Data and Applications Center (SEDAC) hosted by the Center for International Earth Science Information Network (CIESIN) at Columbia University. We also make our R script available since it is likely that this method can be used to map smallholder agriculture in other regions across the globe given that our method performed well in disparate agro-ecologies across India

    Satellite remote sensing for assessment of irrigation system performance: a case study in India

    Get PDF
    Irrigation management / Irrigated farming / Agricultural production / Irrigation systems / Food production / Rice / Cropping systems / Crop yield / Remote sensing / GIS / Models / Policy / Case studies / Satellite surveys / Performance evaluation / India / Bhadra Project
    • …
    corecore