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8 Agricultural Drought 
Monitoring in Kenya 
Using Evapotranspiration 
Derived from 
Remote Sensing and 
Reanalysis Data

Michael T. Marshall, Christopher Funk, 
and Joel Michaelsen

8.1  INTRODUCTION

More than half of the people in sub-Saharan Africa live on less than US$ 1.25 per day, 
and nearly 30% do not receive sufficient nourishment to maintain daily health (UN, 
2009a). These figures are expected to rise as a result of the recent global financial 
crisis that has led to an increase in food prices. Food for Peace (FFP), the program 
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that administers more than 85% of U.S. international food aid, recently reported that 
the seven largest recipient countries of food aid worldwide are in sub-Saharan Africa 
(FFP, 2010). In Kenya, the fifth largest recipient of food aid from FFP and a country 
highly dependent on rainfed agriculture, below-average precipitation in 2009 led to 
a 20% reduction in maize production and a 100% increase in domestic maize prices 
(FEWS NET, 2009). Given these sorts of climatic shocks, it is imperative that miti-
gation strategies be developed for sub-Saharan Africa and other regions of the devel-
oping world to improve the international and national response to impending food 
crises. Crop monitoring is an important tool used by national agricultural offices and 
other stakeholders to inform food security analyses and agricultural drought mitiga-
tion. Remote sensing and surface reanalysis data facilitate efficient and cost-effective 
approaches to measuring determinants of agricultural drought. In this chapter, we 
explore how remotely sensed estimates of actual evapotranspiration (ETa) can be 
integrated with surface reanalysis data to augment agricultural drought monitoring 
systems.

Although water availability is important throughout every stage of crop devel-
opment, from germination to harvest, crops are most sensitive to moisture defi-
cits during the reproductive stages (Shanahan and Nielsen, 1987). A study that 
analyzed maize, for example, showed that a 1% decline in seasonal ETa led to an 
average loss of 1.5% in crop yield, whereas water stress in the same proportion 
concentrated during the reproductive phases led to a 2.6% decline in crop yield 
(Stegman, 1982). Agricultural drought can therefore be defined as inadequate soil 
water availability, particularly during the reproductive phase, caused by low pre-
cipitation, insufficient water-holding capacity in the root zone of the soil, and/or 
high atmospheric water demand (potential evapotranspiration, ETp), which results 
in a reduction in crop yield. Agricultural droughts differ in timescale and impact 
from shorter-term meteorological droughts, which are characterized by negative 
precipitation anomalies on the order of days to weeks, and the longer-term negative 
runoff and water storage anomalies that characterize hydrological drought (Dracup 
et al., 1980).

Deficits in ETa are a direct measure of crop stress and can be integrated into agri-
cultural drought monitoring systems. In response to large soil moisture deficits, for 
example, plants close their stomata, thereby downregulating water and CO2 exchange 
with the atmosphere (Jones, 1992). This protects plants from excessive water loss 
and cavitation and reduces ETa, which is the quantity of moisture that is lost to the 
atmosphere via wet canopy and soil evaporation and transpiration. There are sev-
eral options for integrating ETa estimates into agricultural drought monitoring. One 
possibility is using ETa anomalies derived from a suite of observed, reanalysis, and 
remote sensing data to provide a simple means for assessing crop stress, although 
this approach would have limited use in the most agriculturally intensive regions of 
the developing world where the variability in soil moisture (and therefore variability 
in ETa) is low. A more sophisticated application would involve a crop model that 
uses ETa explicitly to determine impact of moisture anomalies on start of season, 
length of growing period, crop yield, and water availability. The major disadvantage 
of this approach in data-sparse regions is that the models require detailed meteoro-
logical data derived from a dense network of weather stations. Remote sensing and 
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surface reanalysis meteorological models, however, have made this approach more 
feasible in recent decades.

In this chapter, an ETa-based crop index that represents a balance between simple 
and complex monitoring tools is presented and applied in sub-Saharan Africa to 
illustrate its utility in monitoring agricultural drought. Given the scarcity of obser-
vational data in the region, an ETa model is used to derive the index. The model is a 
hybrid that combines components of two models that were parameterized with freely 
available remote sensing and surface reanalysis meteorological data. The ETa model 
was evaluated for major biomes throughout sub-Saharan Africa using eddy covari-
ance flux tower data in Marshall et al. (2011). This chapter builds on the previous 
work by extending model performance using district-level crop yield data. An ETa-
based crop index derived from the model is then applied to food security analysis. 
The index is compared qualitatively against the Standardized Precipitation Index 
(SPI), which is a common index used to monitor agricultural droughts in this region 
of Africa. The chapter concludes with recommendations on how to integrate the ETa-
based index into a regular monitoring scheme and a brief, general discussion regard-
ing the future direction of agricultural drought monitoring in sub-Saharan Africa.

8.2  REVIEW OF INDICES FOR CROP MONITORING

8.2.1  Climate-Based Indices

McGuire and Palmer (1957) were the first to develop an index specifically for agri-
cultural drought monitoring. The index was simply the ratio of atmospheric water 
demand (ETp) to supply (precipitation + soil moisture). The resulting Moisture 
Adequacy Index (MAI) is a relative measure of the moisture available to support 
normal plant functions. Crops are assumed to be under stress when water demand is 
much greater than supply. Since the development of the MAI, several other concep-
tually simple indices have been developed that are better able to capture the spatio-
temporal complexities of an agricultural drought. Heim (2002) provides a thorough 
review of agricultural drought indices commonly used in the United States and 
globally.

The most notable achievement in crop monitoring occurred shortly after the devel-
opment of MAI with the application of a simple water balance model to evaluate 
meteorological droughts (Palmer, 1965). The Palmer Drought Severity Index (PDSI) 
measures the precipitation required to balance the changes in moisture inputs (precipi-
tation and soil recharge) with outputs (ETa and runoff). A two-layer soil profile is used 
to estimate runoff and soil moisture recharge from the difference between precipitation 
and ETa, which is calculated as the excess ETp above precipitation. PDSI is typically 
standardized using a climatologically driven weighting function to yield the Moisture 
Anomaly Index (PDSI-z). PDSI-z responds to moisture conditions over short periods 
of time, so it is more appropriately used for identifying meteorological and agricultural 
droughts (Karl, 1986). In addition, PDSI-z is a standardized index, making its applica-
tion across regions more appropriate than PDSI for meteorological and agricultural 
droughts. Palmer (1965) also developed the Crop Moisture Index (CMI), which uses 
PDSI constrained by dry and wet ranges to identify agricultural droughts. There is 
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overlap between the dry and wet ranges, often leading to contradictions in drought onset 
and cessation. Alley (1984) gives a thorough description of PDSI and CMI, including 
sources of error and major limitations when applied to agricultural drought.

The strong dependence of PDSI on rainfall has contributed to the development 
of precipitation-based indices, the most notable of which is the SPI (McKee et al., 
1993). Although the SPI has been used primarily to monitor meteorological droughts, 
it is scalable and has been applied successfully to agricultural drought monitoring as 
well (Keyantash and Dracup, 2002). The index is a standardized representation of the 
deviation of rainfall probabilities from the long-term mean. These probabilities are 
typically approximated using a gamma or Pearson III distribution (Guttman, 1999). 
In contrast with the PDSI-z, the SPI requires fewer potentially uncertain inputs, it can 
be estimated at various temporal scales, and its physical meaning is easier to interpret.

8.2.2  Satellite-Based Indices

Satellite observations of vegetation conditions have provided another basis for crop 
monitoring. The Normalized Difference Vegetation Index (NDVI) (Rouse et al., 
1974), derived from remotely sensed visible and near-infrared reflectance, is sensi-
tive to the photosynthetic capacity of plants and typically lags precipitation by 1–2 
months in sub-Saharan Africa (Nicholson et al., 1990). NDVI has been used to char-
acterize trends in vegetation (Philippon et al., 2007) and interannual variability in 
precipitation (Anyamba and Eastman, 1996). A common approach to monitoring 
crop stress using NDVI is to combine it with remotely sensed temperature, yield-
ing a composite index such as the Vegetation Health Index (VHI) (Kogan, 1995). 
The inclusion of temperature conveys additional information on drought conditions 
(e.g., soil dryness, plant stress) not captured by NDVI alone. VHI assumes that NDVI 
and surface temperature are inversely related and is therefore useful where soil mois-
ture is a constraint on plant health. In canopies found commonly in tropical Africa, 
plants are light limited. In these cases, temperature and NDVI are directly related, 
because plants prefer to photosynthesize at warmer temperatures when moisture is 
not a limiting factor (Karnieli et al., 2006). The uncertainty in the NDVI–tempera-
ture relationship for different climatic zones and land cover types therefore makes 
regional drought monitoring difficult with VHI.

Most recently, process-based models of ETa have been used to develop indices 
for agricultural drought monitoring. Unlike precipitation, ETa takes into account 
additional factors contributing to crop stress, including vegetation type and phe-
nology, antecedent soil moisture conditions, and soil properties (Narasimhan and 
Srinivasan, 2005). In addition, ETa-based indices are more sensitive than precipi-
tation-based indices to gradual changes in soil moisture and crop stress that occur 
during agricultural droughts. An ETa-based index used extensively in sub-Saharan 
Africa is the Water Requirement Satisfaction Index (WRSI), first developed by the 
United Nations (UN) Food and Agriculture Organization (FAO) (Doorenbos and 
Pruitt, 1977). WRSI is the ratio of ETa to ET0, the reference evapotranspiration 
adjusted by an empirically derived coefficient that accounts for crop type and its 
specific growth stage. ET0 is derived for a wet grass using the Monteith (1965) equa-
tion driven by surface net radiation, temperature, and vapor pressure. WRSI uses a 
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simple bucket model, with no soil profile, making ETa essentially a residual of ETp 
and precipitation (Senay and Verdin, 2003). Given the complexities of modeling ETa 
in data-sparse regions, the major disadvantages of the model are that start season 
and length of growing period are estimated from NDVI, the required climate data 
tend to have very coarse spatial resolution, and ETp is derived from an empirical rela-
tionship between the crop coefficient and ET0. In reality, this coefficient varies dra-
matically across land cover types, as well as intra- and interseasonally, making its 
application over broad areas and time frames difficult (Allen, 2000). Anderson et al. 
(2007) developed the Evaporative Stress Index (ESI) for the United States, which is 
conceptually similar to WRSI, but uses an energy balance approach to estimate ETa. 
Unlike bucket models, the energy balance approach avoids assumptions of the soil 
profile and requires vegetation and temperature inputs, which are more certain than 
remotely sensed precipitation data in sub-Saharan Africa. The approach, however, 
does require land-surface temperature (LST) derived from thermal satellite data 
acquired under clear-sky conditions, which is limited by periods of persistent low-
level stratus cloud cover that tends to obscure conditions during the dry season in the 
most food insecure (subtropical) region of Africa.

8.3  DESCRIPTION OF THE EVAPOTRANSPIRATION MODEL

8.3.1  Theoretical Background

The use of temporally continuous surface reanalysis meteorological data can enhance 
temporally coarse resolution remote sensing data used to develop ETa-driven indices 
for crop monitoring applications where dense climate data networks are unavailable. 
Surface reanalysis meteorological data are developed from the synthesis of remote 
sensing, global circulation models (GCMs), and meteorological station data using a 
suite of sophisticated assimilation techniques. Recently, Marshall et al. (2010) evalu-
ated two fundamentally different approaches to estimating ETa, both driven by the 
Global Land Data Assimilation System (GLDAS) surface reanalysis data set (Rodell 
et al., 2004). One approach was driven primarily by remotely sensed vegetation, and the 
other approach was driven primarily by surface reanalysis precipitation. The former 
is described in detail in Fisher et al. (2008) and will be identified as the Fisher model 
for this chapter. The Fisher model uses a series of vegetation and soil moisture factors 
to constrain ETp. The constraints are intentionally simplified to facilitate easy appli-
cation over large data-poor areas. The second approach, called the National Centers 
for Environmental Prediction, Oregon State University, Air Force, and Hydrologic 
Research Lab (Noah) Land Surface Model, is described in detail in Chen et al. (2007). 
Both approaches compute ETa as the sum of transpiration (ETc), wet canopy evapora-
tion (ETi), and bare soil evaporation (ETs). Marshall et al. (2010) demonstrated that ETc 
from the Fisher model, which included a dynamic vegetation component, performed 
particularly well with reanalysis data for energy-limited (humid) sites, while Noah 
more accurately captured the soil and wet canopy components in moisture-limited 
(dry) sites. This led to the integration of ETc of the Fisher model with ETs and ETi from 
the Noah model to provide a more robust ET estimation over a range of environmental 
conditions. The components of the model are described in detail later.
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In the hybrid ETa formulation, the transpiration component of the Fisher model 
uses the Priestley and Taylor (1972) equilibrium equation for ETp and retains the 
Priestley–Taylor advection coefficient (α = 1.26). ETc is estimated by constraining 
Priestley–Taylor ETp (the term in square brackets in Equation 8.1) by five coefficients 
analogous to the Jarvis and McNaughton (1986) decoupling coefficient (Ω):

	
ETc c g t m wet Nf f f f f R= −

+






( )1
α

γ
∆

∆ 	 (8.1)

where fc, fg, ft, fm, and  fwet are total vegetation fraction, photosynthetically active 
canopy fraction, air temperature constraint, plant moisture constraint, and rela-
tive surface wetness, respectively. The constraints for ETc are defined for daylight 
hours only, when the contribution of ET to the atmospheric water balance is sig-
nificantly larger than at nighttime. At dekadal or monthly time steps, which are 
generally used for agricultural drought monitoring in sub-Saharan Africa, soil heat 
flux is negligible and therefore has been omitted from the equation. ETp is defined 
by three terms: slope of the saturation-to-vapor pressure curve (Δ), psychometric 
constant (γ), and daytime net radiation (RN) in mass units. The vegetation cover 
fraction fc is used to constrain RN in terms of the canopy portion of ETa and is 
calculated as a linear function of NDVI. Early studies showed that NDVI is highly 
correlated with fc calculated from Beer’s law (Sellers, 1987). The active green veg-
etation cover fraction ( fg) is computed as the ratio of fAPAR to fc, where fAPAR is the 
fraction of absorbed photosynthetically active radiation, estimated using a linear 
function of the Enhanced Vegetation Index (EVI) (Huete et al., 2002). Two dif-
ferent vegetation indices were used in these calculations, because EVI is sensitive 
to the chlorophyll content (photosynthetically active portion) of the canopy, while 
NDVI is more effective in capturing the total biomass of the canopy (Huete et al., 
2002). The temperature constraint ft assumes that photosynthesis will increase 
with air temperature until an optimal temperature is achieved (June et al., 2004), 
and once the temperature becomes higher than the optimal temperature, there is a 
decline in photosynthesis at a proportional rate. Optimal temperature is defined as 
the temperature at which the ratio of fAPAR and available radiation to the vapor pres-
sure deficit (VPD) is maximum. It ranges from near 0°C in the Arctic to 35°C in 
subtropical deserts (Potter et al., 1993). The plant moisture constraint fm is defined 
as the relative change in light absorptance (fAPAR/maximum fAPAR), assuming that 
plant moisture stress (moisture availability) varies with the amount of light a plant 
absorbs. When a plant is moisture stressed, it will close its stomata (reduce pho-
tosynthesis) to prevent cavitation. Maximum fAPAR is determined over the avail-
able time series using the equation for fAPAR (function of EVI) defined earlier. The 
factor fwet gives the probability that the surface is wet, defined as a function of 
near-surface relative humidity. The constraint assumes that during daylight hours, 
when relative humidity is at 100%, the surface is completely wetted and will evap-
orate moisture from the wet canopy and bare soil portions to meet atmospheric 
demand. In this case, ETc approaches 0. On the other hand, when relative humidity 
approaches 0%, the surface is completely dry, and the contribution from the wet 
canopy and soil components to ETa is 0. This constraint is an integral component 
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of the wet canopy and soil evaporation components of the Fisher model (not shown 
here), which the Marshall et al. (2010) study revealed was particularly sensitive 
to specific humidity, a highly uncertain surface reanalysis variable (Kalnay et al., 
1996). The model parameterization further amplified these errors.

The Noah model, first described by Chen et al. (1996), takes a water balance 
approach to estimating ETa. The soil evaporation component of the model was based 
on the work of Mahfouf and Noilhan (1991), who compared several approaches to 
estimating soil evaporation and found that the preferred method constrains ETp, as 
defined in Penman (1948), by a moisture availability parameter (β). This parameter 
is driven by soil moisture using the following equation:

	

β = −
−







Θ Θ
Θ Θ

1 w

ref w

f

	 (8.2)

where
Θ1 is the soil moisture in the top soil layer
Θw is the wilting point
Θref is the field capacity of the soil
f is a constant (Betts et al., 1997)

The wet canopy component of the Noah model, which tends to represent the small-
est contribution to total ETa, is computed as ETp constrained by the amount of pre-
cipitation intercepted by the canopy (ratio of intercepted canopy water content to 
maximum canopy water capacity). The transpiration component of the Noah model 
(not shown here) is driven primarily by the total vegetation fraction, which is derived 
from NDVI climatological means (Hogue et al., 2005). This tends to make the model 
insensitive to large phenological changes that are typical in semiarid regions found 
throughout most of sub-Saharan Africa.

The hybrid model uses ETc from the Fisher model and ETi,s from the Noah LSM, 
and was shown to perform as well or better than the individual Fisher and Noah 
models when compared to eddy covariance flux tower data collected in areas repre-
senting major climate zones and land cover types in sub-Saharan Africa (Marshall 
et al., 2010). The major benefit of the hybrid model over the Noah LSM was the use 
of a Fisher-based ETc component driven by dynamic vegetation, which tended to bet-
ter capture the seasonality of ETa at drier sites. The hybrid model performed best 
in humid areas, conditions representative of a significant portion of tropical Africa. 
The performance of the hybrid model at the humid sites was attributed to the use of 
Priestley–Taylor (equilibrium) ETp in the computation of ETc, as implemented in the 
Fisher model. In the equilibrium case, advection is implicitly accounted for by α. 
ETp is therefore driven primarily by RN, so the Priestley–Taylor formulation performs 
better for energy-limited (dense) vegetation and more poorly for moisture-limited 
(sparse) vegetation (Mu et al., 2007), because surface resistance rapidly increases as 
soil dries out due to advection, decreasing α (Agam et al., 2010). Although constraints 
in the Fisher model account for changes in soil moisture, the relatively poor perfor-
mance of the model in semiarid regions suggested that the model could be improved 
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with the use of Penman ETp, where advection is handled explicitly; however, fur-
ther analysis revealed that both formulations gave similar results at all the sites. The 
model used in this chapter, therefore, retains the Priestley–Taylor approach, under the 
assumption that at large (satellite) scales, advection is driven primarily by the growth 
of the convective boundary layer, which in turn is driven by RN (Raupach, 2000).

8.3.2  Data Handling and Processing

The canopy component of the Fisher model was run at a daily time step and requires 
five inputs: NDVI, EVI, maximum air temperature, minimum relative humidity, and 
RN. Daily maximum temperature and relative humidity were used instead of aver-
ages because the relationship between ETa and these variables is strongest during 
midday when convection is high. The climate data used to drive the ETc (Fisher) 
component of the hybrid model were derived from 3-hourly 0.25° (∼25 km) resolu-
tion GLDAS climate data (Rodell et al., 2004). The GLDAS data set is a synthesis of 
various reanalysis, remote sensing, and ground sources, including National Oceanic 
and Atmospheric Administration Global Data Assimilation System (NOAA/
GDAS) atmospheric fields, Climate Prediction Center (CPC) Merged Analysis of 
Precipitation fields (CMAP), and observation-driven shortwave and longwave radia-
tion using the Air Force Weather Agency’s AGRicultural METeorological modeling 
system. These data are available from 2001 to the present, while only the NOAA/
GDAS reanalysis is available for 2000. Saturation vapor pressure was computed 
using the Allen et al. (1998) temperature function and combined with specific 
humidity to estimate relative humidity. Global vegetation fields available at 0.05° 
(∼5 km) spatial resolution from reflectance data acquired by the Moderate Resolution 
Imaging Spectroradiometer (MODIS) on board the Earth Observing System (EOS)-
Terra platform (Huete et al., 2002) were subset for sub-Saharan Africa. The vegeta-
tion index products consist of 16-day composites to reduce noise due to atmospheric 
effects. Postprocessing included a piecewise weighted least squares filter (Swets 
et al., 1999), which further reduces atmospheric effects that can degrade the signal. 
The LEi,s (Noah) components of the hybrid model were downloaded and processed 
in a similar fashion to the GLDAS forcing data (Rodell et al., 2004). The model was 
run over the African domain considered in this study for 2000–2009.

8.4  MODEL CALIBRATION AND VALIDATION

8.4.1  Study Area

The Republic of Kenya, located approximately between 5° 7′ N and 4° 39′ S longi-
tude, is part of the Greater Horn region of Africa along the Indian Ocean (SEDAC, 
2005). Kenya has a surface area of 579,617 km2 comprising 8 provinces that are 
subdivided into 47 districts (Figure 8.1a). According to 2009 figures, the country’s 
population was more than 30 million people, with nearly 22% of Kenyans living in 
urban centers (UN, 2009b). Farming is the primary livelihood of more than 75% of 
the population, conducted either on subsistence plots in marginal farming areas or 
on large plantations in the more arable areas (Uwechue, 1996), with less than 4% 
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of people being pastoralists. Districts to the northwest and east are pastoral, tran-
sitioning to mixed agriculture and pastoral areas to the south, such as West Pokot, 
Baringo, and Laikipia districts (FEWS NET, 2010). The recent increase in drought 
frequency and intensity and conspiring factors such as poor trade infrastructure, 
poverty, lack of government intervention, HIV/AIDS, failed adoption of drought-
tolerant crops, and lack of grazing resources make these districts particularly food 
insecure. The most arable land is found in a high population density corridor consist-
ing of Meru and Nithi districts to the east and Western Province to the west of the 
Great African Rift Valley (Figure 8.1b). These districts include major portions of the 
valley (Bomet, Nakuru, Kericho, Trans-Nzoia, and Uasin Gishu) and are character-
ized largely by cereal and dairy farming, while maize, the primary food staple, is the 
major crop grown outside these districts.

Kenya can be divided into five broad climatic zones: coastal, eastern/north, eastern/
south, eastern/central, and western rift valley (DSK, 2003). The rainfall pattern in 
Kenya is typically bimodal, with a short rainy season (October–December) driven by 
convergence and the southward migration of the Intertropical Convergence Zone and a 
long rainy season (March–May) driven by southeasterly trades and the Indian Monsoon 
in January–February. Figure 8.2a shows the average date of long rain onset in Kenya. 
The onset of rains for the vast majority of the country occurs in March, with the largest 
monthly totals occurring in May for the coastal areas and 1 month earlier in the cen-
tral and northern areas of the country. More than 85% of crops (primarily staples) are 
planted during the month of onset. The western and eastern highlands ascend from the 
Great African Rift Valley. Orographic uplift enhances rainfall in the highlands, which 
receive the largest amount of rainfall (>1000 mm per annum) in the country. The dri-
est parts of the country (<250 mm per annum) are in the lowlands of northern Kenya. 
Rainfall in the western rift valley is strongly influenced by Lake Victoria and oro-
graphic uplift in the western highlands. The development of deep convection and cumu-
lous clouds brings rain throughout the year, with surges during the long rainy season 
and the lowest amounts in January–February. Given the extended long rainy season, 
crops are staggered, and the harvest season in the western rift valley (October–January) 
is much longer than the harvest season for the remainder of the country (July–August).

8.4.2  Evapotranspiration and Crop Yield

Water loss through transpiration is a consequence of carbon uptake, and, therefore, 
ETa often correlates well to fluctuations in plant biomass in areas of dense vegetation. 
Prolonged climate-related stress, as discussed earlier, results in lower carbon uptake 
and plant biomass over the growing season, thus reducing annual crop production 
and yield. Maize is the staple food throughout most of Kenya and is grown primar-
ily during the long rainy season, so production and planted area statistics from this 
season of the year were deemed appropriate to evaluate the ETa hybrid model. The 
agricultural ministry conducts an exhaustive field campaign that measures cropped 
area (ha) before harvest and estimates crop production by counting bags of a particu-
lar crop at harvest (Freund, 2005). These point measurements are then extrapolated 
to each district, yielding a district-level estimate of crop area, production, and yield. 
For this study, crop production statistics at the district level from 2000 to 2004 were 
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FIGURE 8.2  Mean date of long rain onset identified by the dekad (1–3) for each month, 
with yellow shading indicating cropped area (a) and months showing high (ρ ≥ 0.7) correla-
tions between ETa and district-level maize yield (b). Districts in white showed no correlation 
between ETa and yield in any month, while districts in brown showed correlations outside the 
growing season.
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acquired from Kenya’s Department of Resource Surveys and Remote Sensing of the 
Ministry of Planning and National Development. The hybrid (Fisher ETc + Noah 
ETi,s) model results were compared against the Noah ETa and ETc results from the 
Fisher model. ETc from the Fisher model was also included in the evaluation because 
it was expected that transpiration, a direct measure of moisture availability in the 
root zone, would track crop stress well on its own.

Statistics from 70 districts were aggregated to 47 districts to match a vector file 
that contained pre-2001 district-level administrative boundaries. The vector file was 
used to obtain monthly areal statistics from the 0.05° hybrid (Fisher ETc + Noah 
ETi,s) and 0.25° Noah gridded data sets. ETa totals (mm) averaged over each of the 47 
districts for each month in the extended long rainy season (March–August) were used 
in the comparison. Monthly anomalies were computed from the 5 year (2000–2004) 
means. The Spearman rank correlation coefficient (ρ) was used to identify months 
where ETa anomalies correlated well with maize yield. This resulted in only five 
data points (i.e., one per year in study period) for each month of analysis. A ρ ≥ 0.7 
(confidence = 90%) threshold was used to discern between strong and weak correla-
tions. The Spearman rank correlation is a nonparametric technique used to detect 
monotonic trends (Sprent and Smeeton, 2007) and is essentially the Pearson correla-
tion coefficient (R) for ranked data where ties are accounted for by taking the arith-
metic average of the ranks. The Spearman rank correlation was chosen for several 
reasons: (1) production data are highly uncertain and often contain several outliers 
that tend to limit the ability of parametric techniques; (2) crop metrics, such as sea-
sonal average NDVI, tend to do well at discriminating between “wet” and “dry” 
years when crops are limited by rainfall, but poorly differentiate “good” and “very 
good” production years when relatively small differences in production are a result 
of nonclimatic factors (Funk and Verdin, 2009); and (3) it is appropriate for small 
sample sizes.

The map in Figure 8.2b demonstrates the regional seasonality in the relationship 
between ETa and yield, as indicated by the consensus of the two models on the corre-
lation of yield to ETa. For each district, the months in which monthly ETa anomalies 
correlate well (ρ ≥ 0.7) with yield from the hybrid model are identified in the fig-
ure. The months are nearly identical to those from the Noah model, but the correla-
tions were typically lower for the latter. It is important to note that the correlations 
between ETa and maize yield reflect only climate-driven variability. It is therefore 
assumed that several nonclimatic factors, such as labor input and soil tilth, play a 
lesser role in controlling maize yield. Districts highlighted in white showed poor 
correlations across all the months, while districts in brown showed correlations out-
side the expected growing season. In 36 of the 47 districts (77%), the ETa anomalies 
from the hybrid model were better correlated with yield than were Noah model ETa 
anomalies, as assessed on a month-by-month basis. For four of the wettest districts 
(Bungoma, Kisii, Taita Taveta, and Vihigia), ETa anomalies from the Noah model 
were marginally better correlated with yield, at a low level of confidence (<50%). 
Of the five remaining districts, four showed higher correlations between yield and 
Noah ETa than the hybrid model, but these correlations occurred during noncritical 
(outside the growing season) months of the year. The only district in which the Noah 
model provided significantly higher correlations during critical growing season 
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months was in another wet district (Siaya), but the cause (or causes) of this result in 
this district is (are) unclear.

The variability in ETa and maize yield correlations and inconsistencies with the 
expected growing season are highest in Western Kenya. Possible causes for this 
include poor crop reporting or the importance of nonclimatic factors. The most 
probable cause, however, deals with the climate and planting regime of this region. 
The western districts of Kenya are characterized by fairly consistent rainfall and 
a staggered planting regime throughout the year, meaning the variability in ETa is 
low. Areas of low variability tend to transpire at or close to the atmospheric demand 
because they are not moisture limited. This could explain why some districts showed 
high correlations between ETa and maize yield for some of the districts and low 
to no correlations in other districts. For the majority of the crop-producing dis-
tricts in Kenya, ETa appears to correlate with the grain-filling (reproductive) period 
of the seasonal calendar. The Rift Valley districts have a prolonged rainy season 
(February–September) and a relatively late harvest (October–February), so grain 
filling (June–August) is later than other districts. In the central and eastern high-
lands, the rainy season is shorter (March–June), and the harvest (July–September) is 
much earlier than the Rift Valley districts, so grain filling occurs earlier (May–July). 
Pastoral districts to the north have a shorter growing and later rainy season than the 
central and eastern highlands, so the highest correlation between ETa and maize 
yield is earlier, again reflecting the grain-filling period of the seasonal calendar. 
Districts along the southeast coast showed weak or no correlations between ETa and 
maize yield, and this is most likely due to the low variability in maize yield. These 
districts grow crops primarily during the short rainy season (October–January).

Districts highlighted with a graduated grayscale scheme in Figure 8.3 were 
selected for further analysis because they represent the most intensely cultivated 
and populated districts of the country. These districts showed significant (ρ ≥ 0.7) 
correlations between maize yield and modeled ETa averaged over May–July, the 
critical grain-filling period of the seasonal calendar. The Spearman rank correla-
tion between the hybrid and Noah model ETa and district-level yield in this focus 
area for the May–July season are shown in Figure 8.3a and b, respectively. Modeled 
ETa anomalies in these months tended to show the strongest correlations with maize 
yield and therefore may be the most optimal midseason predictors. In general, both 
models provided similar correlations, with slightly stronger predictive values from 
the hybrid model except in the Kitui District. Noah correlations were significantly 
lower in the East Marakwet and Nyeri districts, most likely because of poor observed 
rainfall representation and reanalysis data used to drive Noah ETa. The apparent 
2–3 month lag between optimal ETa (strongest ETa-yield relationship) and rainfall 
onset is consistent with previous studies that showed a 2–3 month lagged relationship 
between rainfall onset and peak NDVI (Nicholson et al., 1990). This lag accounts for 
the vegetation response to accumulated soil moisture, which is most critical during 
the grain-filling period.

To further study the predictive capacity of midseason ETa for end-of-season yield, 
May–July ETa anomalies computed from monthly averages from each district poly-
gon highlighted in Figure 8.3 were compared with yield anomalies in Figure 8.4. Here 
we examine anomalies in ETa from both models and ETc (canopy component only) 
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Average May–July correlations with yield (hybrid)
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FIGURE 8.3  Spearman rank correlations for select districts between May–July average ETa 
and district-level crop yield (2000–2004) for the combined (Fisher ETc + Noah ETi,s) model 
(a) and Noah LSM (b). White indicates areas where correlations were 0.
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FIGURE 8.4  Comparison of crop yield anomalies with May–July ETa anomalies using ETa 
from Noah (a), ETa from the hybrid model (b), and ETc from the Fisher model (N = 95) (c).
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from the Fisher model, to determine the relative predictive power of ETc in isolation. 
The use of 19 districts and 5 years of yield data gave a total of 95 data points for 
analysis. The confidence levels were not computed, because each sample is not truly 
independent (i.e., wet and dry years will tend to cluster, because neighboring districts 
will exhibit similar climate and growth response). The correlation between Noah 
ETa anomalies and yield (ρ = 0.55, R = 0.57) was significantly lower than the hybrid 
model (ρ = 0.74, R = 0.64) or the canopy component of the Fisher model (ρ = 0.74, 
R = 0.65). However, the transpiration component correlations were similar to those 
from the hybrid model ETa. From an operational standpoint, ETc is a preferred indi-
cator because it requires fewer inputs to compute. ETa from the hybrid model and 
Fisher ETc each explained ∼55% of the variance in maize yield, which is within the 
acceptable range for crop monitoring applications related to food security.

8.5  ET-BASED DROUGHT INDEX

Given that ETc from the Fisher model appears to have utility in predicting end-of-
season yield variability, ETc was used in this section to develop a drought monitoring 
index analogous to the ESI introduced by Anderson et al. (2007), given by 1 − ETa/
ETp. As with WRSI, ET is constrained by the atmospheric water demand. An ESI 
value approaching 1 indicates very low ETa, reflecting low soil moisture and associ-
ated crop stress conditions. As ESI approaches 0, ETa approaches ETp, which occurs 
when soil moisture is high and the crop is not constrained by a loss of water to the 
atmosphere. Here we formulate a modified version of the ESI focusing on crop stress 
and agricultural drought monitoring using the ratio of ETc to canopy ETp. Substituting 
the Fisher transpiration component into this relationship yields the following index:

	
ESIc = − −( )1 1f f f fg t m wet 	

(8.3)

The index eliminates the need for the estimation of RN used in ETp. The ESIc requires 
only estimates of NDVI and EVI derived from remote sensing and air temperature 
and relative humidity derived from surface reanalysis meteorological data. This for-
mulation neglects evaporation from the canopy and soil surface, which is reasonable 
given that crop stress is directly proportional to the amount of water available in the 
root zone. Marshall et al. (2010) demonstrated that the Fisher model for ETc is driven 
primarily by EVI, and, therefore, this index essentially tracks vegetation anoma-
lies as modified by the air temperature and humidity response functions ( ft and fm). 
Unlike VHI, which uses radiometric surface temperature as a proxy for soil dryness, 
this index uses surface reanalysis meteorological data (temperature, pressure, and 
specific humidity) to simulate soil dryness.

Seasonal (May–July) average ESIc was computed over Kenya from 2000 to 2009 
at 0.05° resolution using the data sources described in Section 8.3. To account for dif-
ferences in ESIc across crop types and climatic zones and to improve comparability 
with other statistical drought indices, the ESIc data set was normalized by the mean 
and variance to form a Z-score. Z-scores standardize a sample distribution to a nor-
mal distribution. A Z-score of negative one represents 1σ below the normal mean (0), 
while a Z-score of positive one represents 1σ above the normal mean. Values ranged 
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between −2.5σ and +2.5σ, where negative values indicate wet anomalies and positive 
values indicate dry anomalies.

In Figure 8.5, ESIc seasonal anomalies for Kenya are compared with SPI sea-
sonal anomalies using visualizations created with the Early Warning Explorer 
(EWX: http://earlywarning.usgs.gov/fews/) interface recently developed by the 
Climate Hazards Group at the University of California, Santa Barbara, to inform 
food security researchers and policy makers. EWX is a web-based, desktop-like 
application for exploring geospatial as well as time series data related to famine 
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FIGURE 8.5  (See color insert.) May–July ESIc anomalies (a, b) and  March–May SPI, 
(c, d) for Kenya in 2000 and 2003, respectively. Values are expressed as Z-scores of ESIc and 
the gamma probability of rainfall. Areas in white indicate missing data/bad values.
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early warning activities. The EWX enables food security researchers and policy 
makers to view related data sets side-by-side, and has many advanced features 
found in traditional GIS applications. The SPI was computed from 0.1° (∼10 km) 
resolution dekadal Rainfall Estimates (RFE) 2.0 data, and normalized to the period 
2000–2009. RFE 2.0 rainfall combines a suite of data sources using the method-
ology described in Xie and Arkin (1997), using satellite data from the Meteosat 
geostationary satellites, the Advanced Microwave Sounding Unit (AMSU), the 
Special Sensor Microwave/Imager (SSM/I) infrared data, and meteorological data 
from approximately 1000 stations throughout sub-Saharan Africa that are part of 
the World Meteorological Organization’s Global Telecommunication System. The 
SPI shown in Figure 8.5 was computed for the long rainy season (March–May) to 
accommodate for the time lag between precipitation and vegetation green-up. SPI 
ranges from −3σ to +3σ, where positive and negative scores indicate dry and wet 
anomalies, respectively.

Figure 8.5 shows SPI and ESIc for an extremely dry year (2000) and wet year 
(2003). ESIc and SPI show general agreement in the major crop-producing districts. 
In 2000, strong positive (dry) ESIc anomalies and negative (dry) SPI anomalies can 
be seen in Nakuru, Narok, Nyandarua, Meru, Nithi, Embu, Muranga, Kiambu, and 
Nairobi. The negative (wet) ESIc anomalies observed in Nyeri cover an area that 
includes Mount Kenya (elevation = 5199 m), where most of the precipitation is the 
result of orographic lifting. As a result, this area receives rainfall throughout most 
of the year and is not representative of other parts of the district. SPI is at a coarser 
spatial resolution than ESIc and is not well represented by meteorological stations in 
this area, which may contribute to the observed bias in SPI. Strong wet anomalies for 
both ESIc and SPI can be seen in southeastern districts along the coast. Normal con-
ditions in the west of the country along Lake Victoria are well represented by both 
data sets as well. Food security reports corroborate these relatively localized pat-
terns in ESIc, which reflects the normal long rains confined to localized areas in the 
west, along the coast, and around Mount Kenya (Nyeri district) (FEWS NET, 2000). 
Food security reports in 2000 indicate high food insecurity in districts with chronic 
food shortages that include Turkana, Samburu, Marsabit, and Wajir with more spo-
radic insecurity in the districts of Isiolo, Garissa, and Mandera. The extremity of 
deficits in the north and east is less pronounced in ESIc than SPI. This is most 
likely due to a low vegetation signal (i.e., low canopy cover) in these arid areas. 
In Marshall et al. (2010), the hybrid ETa model showed its weakest performance 
at the most arid eddy covariance flux tower sites, and this was attributed in part to 
the strong dependence of the model on EVI and the low EVI signal in these areas. 
The coarse resolution of the EVI data and dominance of bare soil in these areas 
could make EVI insensitive to phenological changes in drier areas. Other contrib-
uting factors could include poor specific humidity reanalysis data or soil moisture 
formulation. In 2003, wet anomalies can be seen for both indices in the major crop-
producing districts. Neutral conditions and wet anomalies for both indices in the 
north and along the coast can be seen as well. The moderate dry anomaly in Uasin 
Gishu, West Pokot, and Trans-Nzoia districts that is not indicated by SPI may be a 
result of the delayed onset of rains in this area, which caused below-normal food 
production (FEWS NET, 2003).
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The ESIc and SPI were also compared for 2009 (Figure 8.6) because this was a 
unique year climatically in the 10 year time series, with a delayed onset of the long 
rains throughout much of central, eastern, and coastal Kenya. This delay combined 
with 3 years of successive drought made 2009 particularly challenging for farmers. In 
the Kitui district (south-central Kenya), for example, maize prices increased by more 
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FIGURE 8.6  (See color insert.) Map of Kenya in 2009 showing May–July ESIc anomalies (a), 
March–May SPI (b), and
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than 200% in response to crop failure (FEWS NET, 2009). Figure 8.6 compares ESIc 
and SPI along with anomalies in the MODIS land surface temperature (LST) product 
(Wan et al., 2004) computed for May–July. LST was included in the analysis, because 
it can be readily viewed with SPI on the EWX webpage, and because it provides 
proxy remote sensing information about the current surface moisture status. The LST 
product used on the EWX webpage is derived from the MODIS thermal sensor on 
board the Aqua platform, resampled to 0.05° spatial resolution globally at a daily time 
step. ESIc provides a good representation of the range of food security conditions that 
existed in 2009. In that year, many districts in the west and center of the country with 
normal or slightly above-normal ESIc and SPI conditions (−0.5 to 0.0) were moder-
ately food secure with localized areas of high food insecurity (FEWS NET, 2009). 
Marginal lands, such as those found in Baringo, Kitui, Machakos, and Makueni dis-
tricts, were highly food insecure, as reflected by the large positive ESIc anomalies. 
Pronounced dry anomalies in the SPI appear in the Laikipia and Nyandarua districts, 
but, overall, the SPI fails to capture the severity of drought over the full region of 
insecurity, which may be partially explained by the LST anomaly map in Figure 
8.6c. In 2009, temperatures were abnormally warm, which, when combined with 
late rains, would increase the evaporative moisture loss rate and enhance crop stress. 
These higher temperatures and vegetation stress are reflected over much of Kenya in 
the MODIS LST anomaly map, but they would not have been as clearly represented 
in the SPI, which is solely dependent on precipitation inputs and does not incorpo-
rate temperature into its calculation. As a result, both climatic drivers impacting the 
rate of water consumption and overall condition of crops in 2009 will be captured in 
ETa-based indices, but not in precipitation-based indices like SPI.
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FIGURE 8.6 (continued)  (See color insert.) May–July MODIS LST anomalies (c).
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8.6  DISCUSSION AND FUTURE WORK

The ESIc index can be implemented in several ways to inform food security analysts and 
policy makers. One option would be to include it in an internet-based tool like EWX, 
which allows side-by-side user comparisons with other indices to give a more complete 
interpretation of agricultural droughts. EWX is stand-alone and interactive, allowing 
stakeholders at multiple levels to develop their own mitigation plans. The results of 
the analysis could be disseminated to the larger stakeholder community via weekly, 
seasonal, and annual reports. The African Dissemination Service is another online 
resource that includes a more comprehensive collection of data than EWX, but it is not 
interactive and requires additional software that may not be available to all stakeholders.

The poor representation of ESIc in the arid areas in the north and east of Kenya 
could be improved to better represent the dry and sparsely vegetated conditions there. 
ESIc is driven primarily by anomalies in vegetation indices and secondarily to sur-
face temperature. Comparisons with other empirical indices that use vegetation and 
temperature as drivers, such as the VHI, will help to determine whether the more 
physical ESIc formulization and inclusion of a formal moisture constraint produces 
any significant improvements in moisture-limited areas. ESIc values in this study 
generally exhibited a skewed distribution over the period 2000–2009. Therefore, 
using Z-scores to represent anomalies may not properly stress the importance of 
extreme events, as was witnessed in the north and east of Kenya in 2000. The gamma 
distribution works particularly well for standardizing rainfall in Africa and should 
be evaluated, along with other distributions to improve interpretation of ESIc. Given 
the stronger SPI signal in arid areas and ESIc signal in the primary agricultural areas, 
a combined index that uses standardized ESIc and SPI could potentially be a power-
ful tool for crop stress monitoring. Given the lagged relationship between rainfall 
and vegetation response, a simple autoregressive model of rainfall and vegetation 
could be used to reformulate the ESIc index in terms of precipitation and tempera-
ture. The index could then be back-casted to measure historical trends in crop stress 
and projected to determine crop stress probabilities under future Intergovernmental 
Panel on Climate Change (IPCC) climate scenarios.

The ETa model hybrid could also be used to improve yield estimate crop models, 
defining start and end of season at a higher resolution than data sets currently used 
in sub-Saharan Africa. This would improve the crop phase adjusted ETp used in crop 
models, such as WRSI. ETa is a leading component of the surface energy and water 
balance. Improved estimates of ETa would be of benefit in applying crop models for 
monitoring crop stress.

8.7  CONCLUSIONS

Precipitation, soil moisture, and vegetation-based indices have historically been used 
to monitor crop stress. ET is more intimately connected to moisture available to 
crops under stress than is precipitation or volumetric soil moisture, but it has not 
been used extensively in the past because of poor parameterization and a general 
lack of calibration and validation data. In this chapter, we presented a simple low-
cost model for estimating ETa that combines remote sensing and surface reanalysis 
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meteorological data. The model was evaluated against an energy and water balance 
approach to estimating ETa using maize yield data in Kenya. The analysis revealed 
that the canopy component of the ETa model performed as well as the hybrid model 
in areas of dense vegetation cover, given its sensitivity to root zone moisture.

The canopy component of the ETa was used to parameterize a new vegetation–
temperature–based crop stress index. Unlike other vegetation–temperature indices, 
the new index includes a moisture constraint on crop health and incorporates a more 
realistic parameterization of vegetation with the inclusion of EVI and temperature by 
including an optimal temperature-response function. However, like other vegetation-
based drought indices, the coarse resolution of satellite imagery used to drive the 
model fails to adequately capture the vegetation signal (and crop stress) in arid regions. 
For the major crop-producing areas of Kenya, however, the analysis demonstrated that 
the ETc-based index is an effective crop monitoring tool using yield data and food 
security reports. The index, which is partially derived from remote sensing, is seen as 
an improvement on remotely sensed vegetation and temperature indices, because the 
formulization includes more general concepts on light and soil moisture limitation and 
surface reanalysis improves the temporal resolution of model inputs. Precipitation-
based indices, which are currently used in sub-Saharan Africa, are a good indicator 
of moisture supply, but do not account for atmospheric moisture demand (ETp), which 
can be critical to maintaining plant health, especially during the reproductive phase. 
Atmospheric demand is directly proportional to surface temperature. Combining an 
index of moisture supply with a temperature component that captures the demand side 
would help to characterize not only onset conditions but the reproductive phase of crop 
growth as well. A compound index that includes ETc and precipitation would therefore 
give a more complete picture of crop development.

The use of ETa-driven models in agricultural studies is still in its infancy in sub-
Saharan Africa. Dense eddy covariance flux tower and lysimeter data sets collected 
in selected areas of sub-Saharan Africa combined with upscaling techniques provide 
a test bed to further refine the ETa model and crop stress index and apply them to an 
array of questions related to agricultural development.
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FIGURE 8.1  Administrative boundaries of Kenya (a) and topographic map of Kenya (b). 
Forty-seven districts span eight provinces outlined in dark brown on the administrative map. 
The western and eastern highlands of Kenya are divided by the Great African Rift Valley 
shown on the topographic map.
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FIGURE 8.5  May–July ESIc anomalies (a, b) and  March–May SPI, (c, d) for Kenya in 2000 
and 2003, respectively. Values are expressed as Z-scores of ESIc and the gamma probability 
of rainfall. Areas in white indicate missing data/bad values.
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FIGURE 8.6  Map of Kenya in 2009 showing May–July ESIc anomalies (a), March–May SPI 
(b), and May–July MODIS LST anomalies (c).
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