75,804 research outputs found

    Remote Job Submission Security

    Get PDF
    Grid Computing is not new, nor for that matter is grid security. The use of grid computing on a heterogeneous network is also not new. What is new is our use of Java Web Start to distribute jobs on the grid. This opens the door to grid computing on a heterogeneous network for Java programmers

    Fine-Grained Authorization for Job and Resource Management Using Akenti and the Globus Toolkit

    Full text link
    As the Grid paradigm is adopted as a standard way of sharing remote resources across organizational domains, the need for fine-grained access control to these resources increases. This paper presents an authorization solution for job submission and control, developed as part of the National Fusion Collaboratory, that uses the Globus Toolkit 2 and the Akenti authorization service in order to perform fine-grained authorization of job and resource management requests in a Grid environment. At job startup, it allows the system to evaluate a user's Resource Specification Language request against authorization policies on resource usage (determining how many CPUs or memory a user can use on a given resource or which executables the user can run). Furthermore, based on authorization policies, it allows other virtual organization members to manage the user's job.Comment: CHEP03, La Jolla, Mar 24-27, TUB2006, Grid Security, 7 pages, 5 figure

    Experimental Study of Remote Job Submission and Execution on LRM through Grid Computing Mechanisms

    Full text link
    Remote job submission and execution is fundamental requirement of distributed computing done using Cluster computing. However, Cluster computing limits usage within a single organization. Grid computing environment can allow use of resources for remote job execution that are available in other organizations. This paper discusses concepts of batch-job execution using LRM and using Grid. The paper discusses two ways of preparing test Grid computing environment that we use for experimental testing of concepts. This paper presents experimental testing of remote job submission and execution mechanisms through LRM specific way and Grid computing ways. Moreover, the paper also discusses various problems faced while working with Grid computing environment and discusses their trouble-shootings. The understanding and experimental testing presented in this paper would become very useful to researchers who are new to the field of job management in Grid.Comment: Fourth International Conference on Advanced Computing & Communication Technologies (ACCT), 201

    SciTokens: Capability-Based Secure Access to Remote Scientific Data

    Full text link
    The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. In this paper, we introduce SciTokens, open source software to help scientists manage their security credentials more reliably and securely. We describe the SciTokens system architecture, design, and implementation addressing use cases from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration and the Large Synoptic Survey Telescope (LSST) projects. We also present our integration with widely-used software that supports distributed scientific computing, including HTCondor, CVMFS, and XrootD. SciTokens uses IETF-standard OAuth tokens for capability-based secure access to remote scientific data. The access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems.Comment: 8 pages, 6 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    Condor services for the Global Grid:interoperability between Condor and OGSA

    Get PDF
    In order for existing grid middleware to remain viable it is important to investigate their potentialfor integration with emerging grid standards and architectural schemes. The Open Grid ServicesArchitecture (OGSA), developed by the Globus Alliance and based on standard XML-based webservices technology, was the first attempt to identify the architectural components required tomigrate towards standardized global grid service delivery. This paper presents an investigation intothe integration of Condor, a widely adopted and sophisticated high-throughput computing softwarepackage, and OGSA; with the aim of bringing Condor in line with advances in Grid computing andprovide the Grid community with a mature suite of high-throughput computing job and resourcemanagement services. This report identifies mappings between elements of the OGSA and Condorinfrastructures, potential areas of conflict, and defines a set of complementary architectural optionsby which individual Condor services can be exposed as OGSA Grid services, in order to achieve aseamless integration of Condor resources in a standardized grid environment

    Development of usable grid services for the biomedical community

    Get PDF
    The BRIDGES project was funded by the UK Department of Trade and Industry to directly address the needs of the cardiovascular research scientists investigating the genetic causes of hypertension as part of the Wellcome Trust funded (ÂŁ4.34M) Cardiovascular Functional Genomics (CFG) project. Specifically, the BRIDGES project developed a compute Grid and a data Grid with security at its heart. This paper presents the experiences in developing usable Grid services for the bio-community and the different phases of prototypes that were refined based upon user requirements and feedback

    Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies

    Full text link
    Grid is an infrastructure that involves the integrated and collaborative use of computers, networks, databases and scientific instruments owned and managed by multiple organizations. Grid applications often involve large amounts of data and/or computing resources that require secure resource sharing across organizational boundaries. This makes Grid application management and deployment a complex undertaking. Grid middlewares provide users with seamless computing ability and uniform access to resources in the heterogeneous Grid environment. Several software toolkits and systems have been developed, most of which are results of academic research projects, all over the world. This chapter will focus on four of these middlewares--UNICORE, Globus, Legion and Gridbus. It also presents our implementation of a resource broker for UNICORE as this functionality was not supported in it. A comparison of these systems on the basis of the architecture, implementation model and several other features is included.Comment: 19 pages, 10 figure

    Data management of nanometre­ scale CMOS device simulations

    Get PDF
    In this paper we discuss the problems arising in managing and curating the data generated by simulations of nanometre scale CMOS (Complementary Metal–Oxide Semiconductor) transistors, circuits and systems and describe the software and operational techniques we have adopted to address them. Such simulations pose a number of challenges including, inter alia, multi­TByte data volumes, complex datasets with complex inter-relations between datasets, multi­-institutional collaborations including multiple specialisms and a mixture of academic and industrial partners, and demanding security requirements driven by commercial imperatives. This work was undertaken as part of the NanoCMOS project. However, the problems, solutions and experience seem likely to be of wider relevance, both within the CMOS design community and more generally in other disciplines

    Towards a grid-enabled simulation framework for nano-CMOS electronics

    Get PDF
    The electronics design industry is facing major challenges as transistors continue to decrease in size. The next generation of devices will be so small that the position of individual atoms will affect their behaviour. This will cause the transistors on a chip to have highly variable characteristics, which in turn will impact circuit and system design tools. The EPSRC project "Meeting the Design Challenges of Nano-CMOS Electronics" (Nana-CMOS) has been funded to explore this area. In this paper, we describe the distributed data-management and computing framework under development within Nano-CMOS. A key aspect of this framework is the need for robust and reliable security mechanisms that support distributed electronics design groups who wish to collaborate by sharing designs, simulations, workflows, datasets and computation resources. This paper presents the system design, and an early prototype of the project which has been useful in helping us to understand the benefits of such a grid infrastructure. In particular, we also present two typical use cases: user authentication, and execution of large-scale device simulations
    • …
    corecore