4 research outputs found

    Um método robusto aplicado no controle de formação e rastreamento de trajetória de um conjunto de robôs móveis não-holonômicos com dinâmica incerta/ A robust method applied to the formation and trajectory tracking control of a set of nonholonomic mobile robots with uncertain dynamics

    Get PDF
    Este artigo propõe a implementação do método de Controle com Rejeição Ativa de Distúrbios (ADRC) com planta modificada em uma estratégia de controle em cascata. O objetivo é realizar a formação e o controle de rastreamento de uma equipe de robôs móveis não-holonômicos com parâmetros dinâmicos incertos. Ao contrário do esquema ADRC padrão que requer um ganho de controle conhecido, o controlador ADRC modificado proposto neste artigo usa uma nova descrição entrada/saída da planta para a estrutura de cada modelo dinâmico de robô. Assim, ao introduzir essa modificação, é possível projetar um controlador robusto sem exigir o conhecimento exato sobre o ganho de controle do sistema. Resultados de simulações computacionais são apresentados para mostrar a eficiência da estratégia proposta

    Cellular Automata Applications in Shortest Path Problem

    Full text link
    Cellular Automata (CAs) are computational models that can capture the essential features of systems in which global behavior emerges from the collective effect of simple components, which interact locally. During the last decades, CAs have been extensively used for mimicking several natural processes and systems to find fine solutions in many complex hard to solve computer science and engineering problems. Among them, the shortest path problem is one of the most pronounced and highly studied problems that scientists have been trying to tackle by using a plethora of methodologies and even unconventional approaches. The proposed solutions are mainly justified by their ability to provide a correct solution in a better time complexity than the renowned Dijkstra's algorithm. Although there is a wide variety regarding the algorithmic complexity of the algorithms suggested, spanning from simplistic graph traversal algorithms to complex nature inspired and bio-mimicking algorithms, in this chapter we focus on the successful application of CAs to shortest path problem as found in various diverse disciplines like computer science, swarm robotics, computer networks, decision science and biomimicking of biological organisms' behaviour. In particular, an introduction on the first CA-based algorithm tackling the shortest path problem is provided in detail. After the short presentation of shortest path algorithms arriving from the relaxization of the CAs principles, the application of the CA-based shortest path definition on the coordinated motion of swarm robotics is also introduced. Moreover, the CA based application of shortest path finding in computer networks is presented in brief. Finally, a CA that models exactly the behavior of a biological organism, namely the Physarum's behavior, finding the minimum-length path between two points in a labyrinth is given.Comment: To appear in the book: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    Formation and organisation in robot swarms.

    Get PDF
    A swarm is defined as a large and independent collection of heterogeneous or homogeneous agents operating in a common environment and seemingly acting in a coherent and coordinated manner. Swarm architectures promote decentralisation and self-organisation which often leads to emergent behaviour. The emergent behaviour of the swarm results from the interactions of the swarm with its environment (or fellow agents), but not as a direct result of design. The creation of artificially simulated swarms or practical robot swarms has become an interesting topic of research in the last decade. Even though many studies have been undertaken using a practical approach to swarm construction, there are still many problems need to be addressed. Such problems include the problem of how to control very simple agents to form patterns; the problem of how an attractor will affect flocking behaviour; and the problem of bridging formation of multiple agents in connecting multiple locations. The central goal of this thesis is to develop early novel theories and algorithms to support swarm robots in. pattern formation tasks. To achieve this, appropriate tools for understanding how to model, design and control individual units have to be developed. This thesis consists of three independent pieces of research work that address the problem of pattern formation of robot swarms in both a centralised and a decentralised way.The first research contribution proposes algorithms of line formation and cluster formation in a decentralised way for relatively simple homogenous agents with very little memory, limited sensing capabilities and processing power. This research utilises the Finite State Machine approach.In the second research contribution, by extending Wilensky's (1999) work on flocking, three different movement models are modelled by changing the maximum viewing angle each agent possesses during the course of changing its direction. An object which releases an artificial potential field is then introduced in the centre of the arena and the behaviours of the collective movement model are studied.The third research contribution studies the complex formation of agents in a task that requires a formation of agents between two locations. This novel research proposes the use Of L-Systems that are evolved using genetic algorithms so that more complex pattern formations can be represented and achieved. Agents will need to have the ability to interpret short strings of rules that form the basic DNA of the formation
    corecore