11 research outputs found

    Efficient deployment of remote laboratories with TwinCAT-PLCs and EjsS Plugins

    Get PDF
    This paper describes a new approach to streamline the development of Remote Laboratories (RL) for Control Education based on TwinCAT Programmable Logic Controllers (PLCs) and Easy JavaScript Simulations (EJsS). On one hand, the TwinCAT PLC is used to implement the laboratory back-end (responsible of closing the feedback loop over the plant under study) with industrial real-time automation methodologies. On the other hand, EJsS is used: 1) to define the RL Human-Machine Interface (HMI) front-end (used by the students to parametrize & observe the evolution of the PLC behavior and signals) and 2) to smooth and centralize the majority of the tasks that the instructors have to perform to configure and deploy the RL. This second utility of EJsS, a novelty of the RL presented in this paper, is supported by an EJsS Plugin that has been especially designed with that purpose. Besides, it is worth noting that our new RL is supported by an improved version of ReNoLabs, developed in 2016 to be a lightweight middle-ware of RLs with EJsS HMI webpages and different types of backends, whose Node.js-based server has been updated to backup the functionality of the EJsS Plugin. This paper also shows how to use our approach to setup a RL and describes the main characteristics of two RLs that have been updated with it

    RASPBERRY PI BASED GLOBAL INDUS- TRIAL PROCESS MONITORING THROUGH WIRELESS COMMUNICATION

    Get PDF
    The project proposes an advanced system for process management via a credit card sized single board computer called raspberry pi based multi parameter monitoring hardware system designed using RS232 and microcontroller that measures and controls various global parameters. The system comprises of a single master and multiple slaves with wireless mode of communication and a raspberry pi system that can either operate on windows or linux operating system. The parameters that can be tracked are temperature, light intensity, water level, gas detection and fire extinguisher. Along these lines we can screen and control the gadgets through remote PC as it is specifically transmitted through program it can be seen anyplace on the planet and can be effortlessly controlled. .Now the users are no longer required to dedicatedly present on-site to monitor the process. Instead any employ of industry can do this task along with his other activities

    WIRELESS INDUSTRIAL PARAMETER MONITORING USING RASPBERRY PI 3

    Get PDF
    This paper proposes an advanced system for process management via a credit card sized single board computer called raspberry pi based multi parameter monitoring hardware system designed using that measures and controls various global parameters. The system comprises of a single master and slave with wireless mode of communication and a raspberry pi system that can either operate on windows or Linux operating system. The parameters that can be tracked are current, voltage, temperature & light intensity. The master board use raspberry Pi, LM35 & LDR Sensors, Water level sensor(IC CD4066) ZIGBEE and Wi-Fi . From slave board the data is sent to the master and from master the data is sent to personal computer. We can monitor the data through Personal computer, display device (16x2 LCD) and simultaneously we will get email alerts when the parameter readings exceed the limit

    Remote control of a robotic unit: a case study for control engineering formation

    Get PDF
    Hands-on experimentation has widely demonstrated its efficacy in engineering training, especially in control formation, since experimentation using computer-aided control system design (CACSD) tools is essential for future engineers. In this context, this article describes a case study for Control Engineering formation, based on a new lab practice for the linear and angular velocity control for a commercial P3-DX robot platform, to teach industrial control. This lab proposal includes all the stages involved in the design of a real control system, from plant identification from an open-loop test to real experimentation of the designed control system. The lab practices proposed have a twofold objective: First, it is an interdisciplinary approach that allows students to put into practice the skills from other subjects in the curriculum, facilitating the integration of knowledge. In addition, it allows increasing the motivation of the students by working with a complex and realistic plant. The proposal has been evaluated through the grades of the students, as well as the perception of both students and instructors, and the results obtained allow to confirm the benefits of the proposal.Universidad de Alcal

    Learning manager for remote experimentation with optoelectronic devices

    Get PDF
    Both the Internet and communications and information technology (ICT), are making a valuable contribution to education. Remote experimentation is an example of the contribution that becomes as a solution to various problems involved with practices in situ, which are a fundamental aspect in the development of skills in engineering education. In this work, we have implemented a learning manager to experience with optoelectronic devices via internet, this tool is composed of a hardware platform comprising a set of electronic components such as light emitting diodes and optocouplers, each one with its respective signal conditioning and communication interfaces; additionally, a Web 2.0 user interface and learning management concepts and content are included. Those facilitate administration and promoting collaborative learning regarding social networks

    Herramienta integral y de bajo coste para el desarrollo de prácticas remotas para las asignaturas de Ciencias e Ingeniería

    Get PDF
    Los laboratorios remotos, en los que los alumnos interactúan con los dispositivos reales a través de Internet, incrementa el tiempo de uso de dichos dispositivos por parte de los alumnos y el número de pruebas que pueden realizar durante las experiencias. Sin embargo, para implementarlos, los docentes habitualmente tienen que saber utilizar una serie de tecnologías diferentes, que dificultan su puesta en marcha y mantenimiento. Para paliar estos problemas, en este Proyecto de Innovación y Mejora de la Calidad Docente (PIMCD) se ha desarrollado una nueva metodología desde la que se centraliza la puesta en marcha de todo el laboratorio desde una única herramienta (Easy JavaScript Simulations, EJsS), que sirve tanto para gestionar el código mediante el que se interactúa con los dispositivos, el servidor que da acceso remoto a la práctica, y la interfaz gráfica con la que los alumnos interactúan con los dispositivos. Además, es importante resaltar que es una metodología de bajo coste, ya que desde el punto de vista del proceso de conversión de un laboratorio presencial ya existente en uno remoto, solo necesita una Raspberry PI para desplegar todo el software del laboratorio. Además, en este proyecto también se presentan un conjunto de experiencias desarrolladas con las mismas, que ya están siendo utilizadas por los alumnos en diferentes asignaturas de Ingeniería Electrónica de Comunicaciones y un nuevo laboratorio remoto de Robótica que se pondrá en marcha el curso que viene

    Desenvolvimento de laboratório de experimentação remota didático para aprendizagem na área da conformação mecânica

    Get PDF
    Esta tese trata do desenvolvimento de um laboratório remoto didático para estudos na área da Conformação Mecânica, chamado de Laboratório Online de Conformação Mecânica (LABCONM), o qual visa proporcionar a aprendizagem da Conformação Mecânica usando experimentos reais operados remotamente. Este laboratório é formado por duas partes principais: A primeira parte é um Sistema de Gerenciamento de Aprendizagem (SGA) contendo todos os menus, atividades e tarefas, agenda e painel de acesso e controle aos experimentos. A segunda parte é a parte física, ou seja, o experimento remoto, que nesta primeira versão do LABCONM é a “Máquina Didática Teleoperada de Ensaio de Compressão” (MDTEC). No painel de controle da MDTEC o estudante controla e visualiza remotamente um ensaio de compressão real e exporta os dados. Uma atividade de aprendizagem experimental foi desenvolvida para guiar os estudantes na busca da solução do problema, gerando assim a aprendizagem da curva de escoamento. Para validar o laboratório, foram feitos dois tipos de testes: O primeiro é funcional e técnico, que analisa os resultados do experimento remoto, avaliando a similaridade e a repetibilidade para fins didáticos. E o segundo teste é uma validação acadêmica, que foi dividida em duas partes. A primeira, foi direta, e feita por um grupo de estudantes da disciplina de Conformação Mecânica, onde responderam questionários após uso do laboratório. A segunda etapa foi indireta, feita pela comparação das notas da prova entre os estudantes que "usaram" com aqueles que "não usaram" o laboratório, visando obter a influência do uso do laboratório na aprendizagem. Os resultados dos testes técnicos e funcionais mostram que a MDTEC é um experimento que tem condições de realizar ensaios de compressão reais, fornecendo dados com boa repetibilidade para levantamento de curvas de escoamento. Na avaliação dos estudantes o LABCONM demonstrou ter cumprido com o objetivo de ensino aprendizagem. Em relação à avaliação da prova aplicada com ambos os grupos de estudantes com e sem acesso ao LABCONM, observou-se que houve uma influencia positiva nos resultados da turma que acessou o laboratório, visto que nenhum destes estudantes do grupo teve nota insatisfatória no exercício de cálculo.This thesis deals with the development of a remote didactic laboratory for studies in the area of Metal Forming, called the Online Laboratory of Metal Forming (LABCONM), which aims to provide the learning of the Metal Forming using real remotely operated experiments. This lab consists of two main parts: The first part is a Learning Management System (SGA) containing all the menus, activities and tasks, agenda and access panel and control to the experiments. The second part is the physical part, that is, the remote experiment, which in this first version of LABCONM is the "Teleoperated Testing Machine for Compression Testing" (MDTEC). In the MDTEC control panel the student remotely controls and visualizes a real compression test and exports the data. An experimental learning activity was developed to guide the students in the search of the solution of the problem, thus generating learning the flow curve. To validate the laboratory, two types of tests were performed: The first one is functional and technical, which analyzes the results of the remote experiment, evaluating similarity and repeatability for didactic purposes. And the second test is an academic validation, which was divided into two parts. The first one was direct, and made by a group of students of the discipline of Mechanical Conformation, where they answered questionnaires after using the laboratory. The second stage was indirect, made by comparing test scores among students who "used" those who "did not use" the laboratory, in order to obtain the influence of the use of the laboratory in learning. The results of the technical and functional tests show that the MDTEC is an experiment that is able to perform real compression tests, providing data with good repeatability for survey of flow curves. In the evaluation of the students the LABCONM has demonstrated to have fulfilled with the objective of teaching-learning. Regarding the evaluation of the test applied with both groups of students with and without access to LABCONM, it was observed that there was a positive influence on the results of the group that visited the laboratory, since none of these students of the group had an unsatisfactory grade in the calculation
    corecore