57,679 research outputs found

    An Improved Timestamp-Based Password Authentication Scheme Using Smart Cards

    Full text link
    With the recent proliferation of distributed systems and networking, remote authentication has become a crucial task in many networking applications. Various schemes have been proposed so far for the two-party remote authentication; however, some of them have been proved to be insecure. In this paper, we propose an efficient timestamp-based password authentication scheme using smart cards. We show various types of forgery attacks against a previously proposed timestamp-based password authentication scheme and improve that scheme to ensure robust security for the remote authentication process, keeping all the advantages that were present in that scheme. Our scheme successfully defends the attacks that could be launched against other related previous schemes. We present a detailed cryptanalysis of previously proposed Shen et. al scheme and an analysis of the improved scheme to show its improvements and efficiency.Comment: 6 page

    Two-factor remote authentication protocol with user anonymity based on elliptic curve cryptography

    Get PDF
    In order to provide secure remote access control, a robust and efficient authentication protocol should realize mutual authentication and session key agreement between clients and the remote server over public channels. Recently, Chun-Ta Li proposed a password authentication and user anonymity protocol by using smart cards, and they claimed that their protocol has satisfied all criteria required by remote authentication. However, we have found that his protocol cannot provide mutual authentication between clients and the remote server. To realize ‘real’ mutual authentication, we propose a two-factor remote authentication protocol based on elliptic curve cryptography in this paper, which not only satisfies the criteria but also bears low computational cost. Detailed analysis shows our proposed protocol is secure and more suitable for practical application

    A Formal Study of the Privacy Concerns in Biometric-Based Remote Authentication Schemes

    Get PDF
    With their increasing popularity in cryptosystems, biometrics have attracted more and more attention from the information security community. However, how to handle the relevant privacy concerns remains to be troublesome. In this paper, we propose a novel security model to formalize the privacy concerns in biometric-based remote authentication schemes. Our security model covers a number of practical privacy concerns such as identity privacy and transaction anonymity, which have not been formally considered in the literature. In addition, we propose a general biometric-based remote authentication scheme and prove its security in our security model

    Cryptanalysis of Sun and Cao's Remote Authentication Scheme with User Anonymity

    Full text link
    Dynamic ID-based remote user authentication schemes ensure efficient and anonymous mutual authentication between entities. In 2013, Khan et al. proposed an improved dynamic ID-based authentication scheme to overcome the security flaws of Wang et al.'s authentication scheme. Recently, Sun and Cao showed that Khan et al. does not satisfies the claim of the user's privacy and proposed an efficient authentication scheme with user anonymity. The Sun and Cao's scheme achieve improvement over Khan et al.'s scheme in both privacy and performance point of view. Unfortunately, we identify that Sun and Cao's scheme does not resist password guessing attack. Additionally, Sun and Cao's scheme does not achieve forward secrecy
    corecore