Experimental Study of DIGIPASS GO3 and the Security of Authentication

Igor Semaev
Department of Informatics, University of Bergen, Norway
e-mail: igor@ii.uib.no

Abstract

Based on the analysis of 6 -digit one-time passwords(OTP) generated by DIGIPASS GO3 we were able to reconstruct the synchronisation system of the token, the OTP generating algorithm and the verification protocol in details essential for an attack. The OTPs are more predictable than expected. A forgery attack is described. We argue the attack success probability is 8^{-5}. That is much higher than 10^{-6} which may be expected if all the digits are independent and uniformly distributed. Under natural assumptions even in a relatively small bank or company with 10^{4} customers the number of compromised accounts during a year may be more than 100 .

1 Introduction

The remote authentication is commonly multi-way. It is based on a combination of the customer's identifier, his static password and a dynamic one-time password(OTP) generated by a security token, or read from a one-time password card, or communicated by a mobile device. Static passwords are at least theoretically may be tapped by a malicious software like trojans with keystroke logging for example, and used for an attack at some later point. Therefore the authentication security is largely based on the security of the one-time password. Theoretically, the latter is insecure if the next one-time password may be predicted with non-negligible probability given a number of previous one-time passwords. For instance, 6-digit password may be predicted with probability 10^{-6} anyway. If it is possible to predict with a significantly larger probability, then there is an internal weakness in the generator or in the verification protocol. The number of attempted wrong log-ins is usually bounded. In practical terms that makes the implementation of the attack more difficult, but does not make that impossible.

DIGIPASS is a one-time password generator manufactured by VASCO [1]. In what follows we study 6-digit combinations produced by DIGIPASS GO3. According to [1], the token is used by lots of customers all over the world, for instance, in Norway, Belgium, Ireland, United Kingdom, Netherlands, Denmark, Saudi Arabia, South Africa etc. It is used in Norwegian banks as Sparebanken Vest, as described in Sect. 4, and DNB NOR. The latter is one of the largest banks in Norway with 2.3 millions of retail customers and 198000 corporate customers. The device uses strong crypto algorithms as DES, TDES and AES and supports event and time based authentication. The detailed description of the algorithm was not published.

Based on the experiments with the token, we show 6-digit combinations from DIGIPASS GO3 are dependent and more predictable than expected. The left most digit is used for synchronisation: it indicates a time interval where the token was pressed to generate the OTP. The left most digit of the current OTP depends on the left most digit of the previous OTP and the time t elapsed since the previous OTP was generated. The left most digit is predictable with probability almost 1 if t
is close to a multiple of 64 seconds. Also we found the token may generate the same combination if $50 \leq t<64$ seconds and the probability of that depends on t. The last 5 digits of the 6 -digit combination are not uniformly distributed: the digits $0,1,2,3,4,5$ appear with probability $1 / 8$, while $6,7,8,9$ appear with probability $1 / 16$.

We were able to reconstruct the synchronisation system of the token, the OTP generating algorithm and the verification protocol, see Sect. 2.5 and Sect. 2.6, in details essential for an attack. Our reconstruction fits well with the experimental data. In particular, it explains the OTP repetition and the token synchronisation. Though the algorithm implemented in DIGIPASS GO3 is somewhat similar to that published in [3] and described in Sect. 5, there is a difference. Due to the synchronisation provided by the left most digit, the verifier needs only one OTP comparison to authenticate the token.

A forgery attack is described in Sect. 3. The left most digit does not affect the security of the authentication. Therefore, the probability of one forged authentication is 8^{-5} instead of 10^{-6} as one may expect.

The attack may be automated and applied against any number of customers which use the token. We study the effect of the attack under natural assumptions that customer identifiers and static passwords are known to the adversary who may use malicious software as trojans etc to procure them, see for instance [4]. Also we assume the adversary is able to attack after each time the customer uses the token for authentication. Under those assumptions even in a relatively small bank or company with 10^{4} customers the number of compromised accounts during a year may be more than 100.

2 Experimental Study of OTPs by DIGIPASS GO3

The experiments were produced by pressing the token and the stopwatch simultaneously at some time steps. A very little fluctuation between the real pressing time and that indicated in the tables below is possible. The data in the tables was produced by the same DIGIPASS GO3 token. Some of the experiments were repeated for other tokens with similar results.

The customer presses the token to generate an OTP. During the next 40 seconds this OTP is kept on the screen and then disappears. If one then presses the token in time between 40 and 50 seconds the same OTP reappears. If one presses in ≥ 50 seconds a new OTP is generated. The OTP may repeat if the token is pressed in between 50 and 64 seconds again as described in the next Sect. 2.1.

2.1 OTPs at time steps within $[0: 50+, 1: 03+$)

Tables 5-18 present 6-digit combinations produced at time step t (format min:sec), where $0: 50 \leq$ $t<0: 51$ (denoted $t=0: 50+$, Table 5), $0: 51 \leq t<0: 52($ denoted $t=0: 51+$, Table 6$)$ and so on.

For instance, 29 combinations in Table 5 were produced at time step $t=0: 50+$. The first OTP 240445 indicates starting time $0: 00.00$, the next 302168 was generated after 50.35 sec, the next 498773 was generated after another 50.41 sec and so on. Surprisingly, the DIGIPASS happens to repeat the combination. For instance, 642055 repeats after $0: 50+$ seconds again etc. That does not seem affect the security of the authentication as the server(verifier) does not accept repeated combination as correct. The sequence of 6 -digit combinations in the tables may be split into intervals, each interval ends with a repeated 6 -digit combination. For $t=0: 50+$ the length
of the intervals is 4 or 5 . The right most column in the tables contains a sequence of differences modulo 10 between the left most digits in subsequent 6 -digit combinations. That is called a pattern of the sequence. The pattern may be split into intervals accordingly.

For $t=0: 51+$ the length of the intervals is 5 or 6 . For $t=0: 52+$ the length of the intervals is 5 or 6 again but the pattern is different. For $t=0: 53+$ the length of the intervals is 6 or 7 and so on. Finally, for $t=1: 03+$ the length of an interval may be larger than 67 .

So when pressing at time step t within $[0: 50+, 1: 03+)$ the first digit of the combination increases by 1 or is the same and the whole combination repeats. The pattern changes when t changes every second. In particular, the probability that 0 appears in the pattern is steadily decreasing while the time step is increasing by a second. For t around $1: 04=64$ seconds the left most digit increases by 1 with probability very close to 1 .

2.2 OTP at time intervals t within [1:04+, $2: 07+$)

When the pressing at time steps within $[1: 04+, 2: 07+$) the first digit of the combination increases by 1 or 2 and the pattern changes every second as above. Tables 19-23 represent 6 -digit combinations after pressing at time steps t, where $t=1: 04+, 1: 21+, 1: 22+, 1: 54+, 2: 07+$. The combinations may be split into the intervals. In Tables 19,20,21 the interval ends each time when the left most digits increases by 2 modulo 10 . In Tables 22,23 the interval ends each time when the left most digits increases by 1 modulo 10 . For $t=1: 21+$ the pattern includes intervals of length 3 and 4 . For $t=1: 22+$ there are intervals of length 3 and 4 again, but the pattern is different. In particular, the intervals of length 3 appear more often than the intervals of length 4 . The pattern for $t=1: 54+$ is very similar to the pattern for $t=0: 50+$ with changing 0,1 by 1,2 .

2.3 Pattern in General

Based on the experiments with the time steps t within $[0: 50+, 1: 03+$) and within $[1: 04+, 2:$ $07+$), and by extrapolating to any time interval we conclude the following.

1. The smallest time interval used in the measurements and the computations by DIGIPASS and the server is a second.
2. For $(1: 04) \times A \leq t<(1: 04) \times(A+1)$ the first digit of the combination increases by A or $A+1$ modulo 10. Each such interval incorporates 64 seconds and is equivalently represented as

$$
\begin{equation*}
t \in[64 \times A, 64 \times(A+1)) \tag{1}
\end{equation*}
$$

Within (1) the pattern only includes digits $A, A+1$ modulo 10 and is changing when t is changing every second.
3. The patterns are similar for time shifts equal to a multiple of 64 seconds. In other words, the patterns are similar for time steps t and $t+64$ seconds after substituting $A, A+1$ by $A+1, A+2$ respectively for any t.
4. Assume an OTP was generated and the next OTP was generated in t seconds. The first digit of the combination may increase by A modulo 10 only if

$$
\begin{equation*}
t \in[64 \times(A-1), 64 \times(A+1)) \tag{2}
\end{equation*}
$$

5. The first digit likely increases by $A-1$ modulo 10 in the beginning of the time interval (2), by $A+1$ modulo 10 in the end. In the middle it mostly increases by A modulo 10 . So if t is about $64 A$ seconds, the left most digit increases by A modulo 10 with probability close to 1 . By symmetry, the probability of getting an increase by A modulo 10 within the interval (2) is $1 / 2$.

Those observations are supported by experiments with random time steps in Table 1 and the time step $10: 46$ in Table 24.

2.4 Synchronising Function

Let $\left(t_{0}, a_{0}\right)$ be some initial values. Let $\left(t_{i}, a_{i}\right), i=1,2, \ldots$ be the sequence of tuples, where t_{i} is the time when an OTP was generated and a_{i} is its left most digit. We claim there is a function $f\left(t_{l}, t_{k}\right)$ such that for any $l>k \geq 0$

1. $f\left(t_{l}, t_{k}\right) \in\left\{h_{l k}-1, h_{l k}\right\}$, where $h_{l k}-1 \leq \frac{t_{l}-t_{k}}{64}<h_{l k}$,
2. $a_{l}-a_{k} \equiv f\left(t_{l}, t_{k}\right) \bmod 10$,
3. and

$$
\begin{equation*}
f\left(t_{l}, t_{k}\right)=\sum_{i=k}^{l-1} f\left(t_{i+1}, t_{i}\right) \tag{3}
\end{equation*}
$$

Though the function f may also depend on some other parameters, that does not affect our conclusions. The value of $f\left(t_{l}, t_{k}\right)$ represents the number of "time steps" between t_{l} and t_{k} and is similar to the time step function used in the well-known time-based OTP algorithm described in Sect. 5. However in contrast, $f\left(t_{l}, t_{k}\right)$ may have two values according to property 1 of f.

For example, the following Table 1 data was produced by pressing the token for 20 random time intervals $t_{i}-t_{i-1}$ within 1 and 10 minutes or so. The 4 -th column of the table presents integers $h-1, h$ such that $h-1 \leq \frac{t_{i}-t_{i-1}}{64}<h$, where $t_{i}-t_{i-1}$ was transformed into seconds. The 5 -th column presents the pattern of the sequence of 6 -digit combinations. The 6 -th column gives the value of $f\left(t_{i}, t_{i-1}\right) \in\{h-1, h\}$ according to the definition above.

Let us compute $f\left(t_{11}, t_{5}\right)$. As $t_{11}-t_{5}=30: 27=1827$ seconds, we have $28 \leq \frac{t_{11}-t_{5}}{64}<29$. By (3), we compute $f\left(t_{11}, t_{5}\right)=5+1+3+9+7+4=29$ and see that $a_{11}-a_{5} \equiv f\left(t_{11}, t_{5}\right) \bmod 10$. Therefore all the properties in the definition of f are satisfied for $f\left(t_{11}, t_{5}\right)$. Similarly, one computes $f\left(t_{l}, t_{k}\right)$ for any other t_{l}, t_{k} in Table 1 and in any other table of this paper and checks it always satisfies the definition.

2.5 How does the token generate an OTP

In this section we reconstruct the way how an OTP is generated by the token. Let t_{0} be some initial moment of time and A_{0} an initial value. Let t_{i-1} be the time of generating the $(i-1)$-th OTP and let A_{i-1} be an auxiliary integer number. Both t_{i-1} and A_{i-1} are kept by the token before the next pair is computed. The next OTP a_{i}, X_{i} is generated at time $t_{i}, i \geq 1$ by

$$
\begin{aligned}
A_{i} & =A_{i-1}+f\left(t_{i}, t_{i-1}\right), \\
a_{i} & \equiv A_{i} \bmod 10 \\
X_{i} & =E_{K}\left(A_{i}\right)
\end{aligned}
$$

Table 1. 6-digit combinations at random time intervals

i	comb.	$t_{i}-t_{i-1}$	$\frac{t_{i}-t_{i-1}}{64}$	$a_{i}-a_{i-1}$	$\bmod 10$
0	565201	$\left(t_{i}, t_{i-1}\right)$			
1	057045	$6: 00$	5,6		
2	031320	$10: 01$	9,10	0	5
3	317587	$3: 11$	2,3	3	10
4	291277	$10: 05$	9,10	9	3
5	433132	$2: 15$	2,3	2	9
6	911213	$5: 08$	4,5	5	2
7	041125	$1: 17$	1,2	1	5
8	319430	$2: 26$	2,3	3	1
9	253057	$10: 16$	9,10	9	3
10	987234	$7: 31$	7,8	7	9
11	398564	$3: 49$	3,4	4	7
12	070423	$7: 32$	7,8	7	4
13	216702	$1: 43$	1,2	2	7
14	542368	$3: 29$	3,4	3	2
15	914109	$4: 35$	4,5	4	3
16	293821	$3: 28$	3,4	3	4
17	348346	$1: 05$	1,2	1	3
18	913123	$5: 39$	5,6	6	1
19	611331	$8: 10$	7,8	7	6
20	501416	$9: 37$	9,10	9	7

where a_{i} is the OTP left most digit and X_{i} is a 5 -digit combination, 6 digits overall. The function E_{K} is based on an encryption algorithm and depends on a secrete key. By induction and the property of f in Sect. 2.4,

$$
\begin{equation*}
A_{i}=A_{i-1}+f\left(t_{i}, t_{i-1}\right)=A_{0}+f\left(t_{i-1}, t_{0}\right)+f\left(t_{i}, t_{i-1}\right)=A_{0}+f\left(t_{i}, t_{0}\right) \tag{4}
\end{equation*}
$$

The algorithm above is similar to one described in Sect. 5 , where the number of time steps is a steadily increasing function: it increases by 1 after each fixed time interval. In contrast, $f\left(t_{i}, t_{0}\right)$ may have two values for t_{i} within the same time interval of 64 seconds, see Sect. 2.4.

The algorithm fits well with the properties of DIGIPASS GO3 found in Sect. 2. In particular, if $f\left(t_{i}, t_{i-1}\right)=0$, then $A_{i}=A_{i-1}$ and the whole OTP repeats. The latter is only possible for $t_{i}-t_{i-1}<64$ seconds by the definition of f. Also the algorithm explains why the token may be pressed any number of times without authentication and the authentication still works after, see the next Sect. 2.6 for details.

2.6 How does the verifier check the OTP

In what follows we reconstruct the server(verifier) action in authentication. When a customer logs in he introduces his identifier and static passwords into a pop up window on the monitor of his computer. He then presses the DIGIPASS, reads an OTP, introduces that into another pop up window and hits the return key. When verifying the server is to solve the following three problems.

1. Handle the delay between generating the OTP and when the server gets it for authentication.
2. Check if the OTP was produced by the token assigned to that customer.
3. Assume a customer generates several OTPs without log in. The server should be able to authenticate that customer with the same token later.

Handling a delay. Let t be the time of generating an OTP and t^{\prime} the time it comes to the server for authentication. There should be an acceptable delay time interval $t^{\prime}-t<T$. We found T is 480 seconds by the following experiment. An OTP was generated and then introduced to the system with a delay of $t^{\prime \prime}$ and the server reaction was observed. The results are in Table 2 . In this experiment T is 8 minutes, that is 480 seconds. Interestingly, after the OTP was introduced with a delay of $7: 59+$ and accepted, the synchronisation between the DIGIPASS and the server got lost. A new token had to be used.

Table 2. Delay handling at the verifier

$t^{\prime \prime}$	$12: 40+$	$10: 00+$	$9: 11+$	$8: 00+$	$7: 59+$	$7: 04+$	$6: 02+$	$5: 06+$
status	reject	reject	reject	reject	accept	accept	accept	accept

Defining the value of \boldsymbol{f} within the delay. Let t_{0} be an initial time and A_{0} an initial integer number, both are available for the prover and the verifier. Let t be the time when the OTP a, X was generated. Let t^{\prime} be the time when it comes to the server for verification. We show the server is able to recover $f\left(t, t_{0}\right)$ if $t^{\prime}-t<480$ seconds. Really, let t^{\prime} belong to the interval

$$
\begin{equation*}
B-1 \leq \frac{t^{\prime}-t_{0}}{64}<B \tag{5}
\end{equation*}
$$

for some B. Therefore if $t^{\prime}-t<480$ seconds, then

$$
\begin{equation*}
B-9 \leq \frac{t-t_{0}}{64}<B \tag{6}
\end{equation*}
$$

So

$$
f\left(t, t_{0}\right) \in\{B-9, \ldots, B-1, B\}
$$

by the definition of f. As $f\left(t, t_{0}\right) \equiv a-A_{0} \bmod 10$, the server finds

$$
\begin{equation*}
f\left(t, t_{0}\right)=A-A_{0} \tag{7}
\end{equation*}
$$

Simultaneously, the verifier learns an interval of at most 128 seconds for t :

$$
\left(f\left(t, t_{0}\right)-1\right) 64 \leq t-t_{0}<\left(f\left(t, t_{0}\right)+1\right) 64
$$

Moreover it is likely that

$$
t \approx f\left(t, t_{0}\right) 64+t_{0}
$$

seconds by property 5 in Sect. 2.3.

Verification protocol In this description we skip the verification of the customer's static passwords. Let t be the moment of time when the token generates a new OTP a, X and t^{\prime} be the moment of time when it comes for verification. The following protocol authenticates the token.

1. Compute B by (5).
2. Find $f\left(t, t_{0}\right)=A-A_{0}$ from (7) and therefore A.
3. Compute

$$
X^{\prime}=E_{K}(A)
$$

and check if $X=X^{\prime}$. If equality, then the OTP is accepted, otherwise rejected.
By the properties of f and by (4), A only depends on A_{0}, t_{0} and t. So the customer may press the token any number of times without \log in and that won't affect the next authentication.

2.7 Last 5 digits distribution

Let

$$
a b c d e f
$$

be a 6 -digit combinations produced by DIGIPASS GO3. According to the analysis in previous sections, the first digit a is used for synchronisation. We study the distribution of the other digits b, c, d, e, f taken separately. There are 814 OTPs without repetitions in all the tables of this article. We count the number of times a decimal digit appears in each of the last five positions in those OTPs. The data is collected in Table 3, where the positions are denoted by b, c, d, e, f. The distributions

Table 3. The experimental digit distribution in the last 5 positions

	0	1	2	3	4	5	6	7	8	9
b	102	92	94	109	102	105	53	59	48	50
c	96	108	96	107	115	80	61	52	45	54
d	101	121	109	94	98	103	51	49	47	41
e	108	100	108	93	110	97	53	56	45	44
f	97	110	110	108	100	83	51	57	54	44

are not uniform. The digits $0,1,2,3,4,5$ appear twice more often on the average than $6,7,8,9$. Our explanation is the following. The last 5 digits are produced from a 20 -bit string of pseudorandom data. One decimal digit per each subsequent 4 -bit string. The latter represents a number from $\{0,1, \ldots, 15\}$ and therefore a decimal digit after reduction modulo 10 . As 4 -bit strings are distributed uniformly, the distribution of decimal digits is as $0,1,2,3,4,5$ have probability $1 / 8$ and $6,7,8,9$ have probability $1 / 16$. That fits well with the experimental Table 3 data.

3 Basic Attack

We may assume customer's static passwords are known to the adversary. In what follows a basic algorithm to forge the dynamic password generated by a DIGIPASS is presented and the probability of success is calculated. Let t^{\prime} be the time the latest OTP generated by the customer came for authentication, it may be known to the adversary or guessed as well.

1. Take random $a \bmod 10$.
2. Generate 5 random digits

$$
b, c, d, e, f \in\{0,1,2,3,4,5\}
$$

Put $X=b c d e f$.
3. Introduce the forged OTP a, X.

To avoid possible security checks at the verifier, one may supply the forged OTP at time $>t^{\prime}+64$ seconds or so for instance. In order to authenticate the server constructs a value A such that $A \equiv a$ $\bmod 10$, computes $X^{\prime}=E_{K}(A)$ and matches X and X^{\prime}.

According to Sect. 2.7, the probability $X=X^{\prime}$ is 8^{-5}. The probability $p(x)$ of the attack success in case of x independent attempts to \log in is

$$
p(x)=1-\left(1-\frac{1}{8^{5}}\right)^{x}
$$

3.1 One customer is targeted

When the customer finishes his session of authentications, the adversary communicates with the server by introducing the customer's identifier and his static password and tries to start a new session of authentications with forged OTP according to the algorithm in Section 3. Also there might be a possibility for the adversary to forge the OTP during the session started by the customer. If not there should be a possibility for him to interrupt the customer's session and then try to start a new session with a forged OTP. Therefore we assume the adversary is able to start forging the customer's authentication after each finished authentication by the customer.

For instance, in Norwegian Sparebanken Vest, see Sect. 4, each transaction requires an authentication. Let a customer use the remote authentication once per month to accomplish 10 authentications, e.g., to start a new session and to pay 9 bills. Therefore the number of forged attempts to authenticate is about $120 r$ during a year per customer, where r is the number of allowed attempts of authentication. In Sparebanken Vest $r=3$. So the attack success probability applied during a year is then $p(120 r)$. If the attacker wants the attack to go unveiled he should wait for a new authentication by the customer to start a series of $r-1$ attempt forged authentication. The success probability is then $p(120(r-1))$ for one year.

Table 4. The success probability during a year

r	1	2	3	4	5	6
$p(120 r)$	0.0036	0.0072	0.0109	0.0145	0.0181	0.0217

3.2 Many customers are targeted

Let N customers use the remote authentication to accomplish 10 authentications per month on the average, that is 120 authentications per year. The average number of successful forged authentications is then about $N p(120 r)$ during one year. The attack may be automated. If it works against
one customer that should work against $N=10^{6}$ or so of them. For $r=3$ we have

$$
N p(120 \times 3) \approx N \times 0.010926
$$

of customer's accounts will get compromised on the average. If $N=10^{6}$ then the number of compromised accounts is around 10926 during one year. For $N=10^{4}$ the number of compromised accounts during one year is around 109.

4 Authentication in a Norwegian Bank

There are 3 ways for a customer in Norwegian Sparebanken Vest to authenticate himself and get access to his account for internet banking. They are

1. "BankID-innlogging" requires the social security number, BankID password of the customer's choice and a one-time password from DIGIPASS GO3.
2. "BankID på mobil" requires the social security number, PIN-code and a mobile phone with a BankID certificate on that.
3. "Alternativ innlogging" requires the social security number, internet banking password of the customer's choice and a one-time password generated by DIGIPASS GO3 or read from a onetime password card.
Two of the three authentication protocols require a one-time password generator.

5 Published One-Time Password Algorithms

Two One-Time Password(OTP) algorithms are published in [2,3]. The first HMAC-based OneTime Password (HOTP) algorithm specifies event-based OTP algorithm. The other(TOTP) is en extension of the HOTP algorithm to support the time-based moving factor. We briefly describe the latter. The prover(token) and the verifier(authentication server) use the same time-step value X. There must be a unique secret key K for each prover. Therefore,

$$
\begin{equation*}
\text { TOTP }=\operatorname{HOTP}(K, T)=\text { Truncate }(\operatorname{HMAC}(" \text { crypto" }, K, T)), \tag{8}
\end{equation*}
$$

where T is an integer number which represents the number of time steps between the initial counter time T_{0} and the current Unix time. More specifically,

$$
T=\left\lfloor\left(\text { Current Unix Time }-T_{0}\right) / X\right\rfloor .
$$

The server should compare OTP not only with the receiving time-stamps but also the past timestamps that are within a transition delay window, specified by the protocol. The function "Truncate" is specified in [2] for HMAC-SHA-1 as "crypto" in (8).

References

1. www.vasco.com/products/client_products/single_button_digipass/digipass_go3.aspx.
www.ietf.org/rfc/rfc4226.txt
2. www.ietf.org/rfc/rfc6238.txt
3. M. Adham, A. Azodi, Y. Desmedt and I. Karaolis, How to Attack Two-Factor Authentication Internet Banking, in FC 2013, LNCS 7859, pp. 322-328, 2013

6 Appendices

Table 5. 6-digit combinations at $0: 50+$

i comb.	$7818140 \mid 1$	15475446 1	
0240445	89436301	165341821	23 141253 1
13021681	99436300	176213391	241412530
24987731	100912111	187471081	252518211
35913271	111478841	197471080	263707551
46420551	122203721	208293721	274554121
56420550	$13 \mid 38812611$	219040891	284554120
677374311	$\underline{14388126 \mid 0}$	22012530	

Table 6. 6-digit combinations at 0 : 51+

i comb. 0 613525		$42 \mid 06205611$	63\|756821 1
${ }_{0}{ }_{1}^{613525}$			648130671
	235444891	442075621	65915018
2 813348 3 900173	246849501	453774841	66000513
	257510931	463774840	67000513
	$26751093{ }^{0}$	47405446	68123010
$6{ }_{6} 6$	2784303111	48510028	69230168
	$28953144{ }^{1}$	49655673	70336542
833	2909143311	50722642	71444814
9446	30102531	51869254	72444814
	31102531	52869254	73524691
115775021	322653731	53930220	74672561
660	33344032	54009236	75774225
711359		55131738	76804
711359	3552050311	56292465	77804713
	365205030	572924650	78906800
	3765932011	58325694	79099042
	387555041	594443241	80158124
	398346721	60546511	81211271
1925252	409562111	61627135	82343838
	419562110	62627135	83343838

Table 7. 6 -digit combinations at $0: 52+$

i comb.	8 40717711	171426561
0 736910	95290211	182054241
18264341	106906431	193449291
29389341	116906430	204498771
30926131	127257021	215887421
41148631	138351361	225887420
51148630	149110411	236540001
62425751	150658041	247310261
73104801	160658040	25852133

[^0]Table 8. 6-digit combinations at $0: 53+$

| i comb. | $9\|304190\| 1$ | | 28\|913106|1 |
| :---: | :---: | :---: | :---: |
| 0543141 | 104027211 | | 290248191 |
| 16325471 | 115842691 | 213249961 | 300248190 |
| 27501221 | 125842690 | 21
 22 412623 | 31103301 |
| 382013311 | 136934191 | 22412623 | 322615441 |
| 49719841 | 147814591 | | |
| 50237431 | 158732551 | 25696243 | |
| 60237430 | 169095061 | 696243 | 355344041 |
| 71236581 | 170341301 | | 366831241 |
| 82136611 | 180341300 | | 376831240 |

Table 9. 6-digit combinations at $0: 54+$

| i | comb. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 460553 | |
| 1 | 522574 | 1 |
| 2 | 605910 | 1 |
| 3 | 708033 | 1 |
| 4 | 891210 | 1 |
| 5 | 982543 | 1 |
| 6 | 019508 | 1 |
| 7 | 019508 | 0 |

Table 10. 6 -digit combinations at 0 : $55+$

i comb.	$7615196 \mid 0$		
0041004	87563621	164241531	
11299551	98902291	17589022 1	252152581
223631911	10932420 1	186401311	263241141
33733351	110510431	197844571	27440322 1
44831031	12130620 1	208203011	285113411
55917901	132515941	219005081	296494521
6661519611	14 320845	$\underline{229005080}$	30649452

Table 11. 6-digit combinations at $0: 56+$

| i | comb. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 232615 | |
| 1 | 345751 | 1 |
| 2 | 476543 | 1 |
| 3 | 581103 | 1 |
| 4 | 694218 | 1 |
| 5 | 700474 | 1 |

Table 12. 6 -digit combinations at 0 : 57+

i	comb.	
0	742005	
1	801269	1
2	906986	1
3	026145	1
4	152120	1
5	273223	1
6	369351	1
7	454726	1
8	572390	1
9	572390	0
10	606452	1
11	741415	1
12	830660	1
13	956443	1

14	041825	1	
15	119034	1	
16	201337	1	
17	305590	1	
18	452553	1	
19	452553	0	
20	546102	1	1
21	617949	1	
22	794572	1	
23	806460	1	
24	904205	1	
25	042962	1	
26	172347	1	
27	234253	1	
28	234253	0	

| 29 | 302724 | 1 |
| :--- | :--- | :--- | :--- |
| 30 | 437411 | 1 |
| 31 | 510241 | 1 |
| 32 | 682113 | 1 |
| 33 | 752402 | 1 |
| 34 | 812812 | 1 |
| 35 | 914573 | 1 |
| 36 | 069241 | 1 |
| 37 | 133169 | 1 |
| 38 | 133169 | 0 |
| 39 | 287604 | 1 |
| 40 | 344041 | 1 |
| 41 | 409260 | 1 |
| 42 | 536335 | 1 |
| 43 | 673364 | 1 |

44	754503	1
45	859096	1
46	915222	1
47	044338	1
48	044338	0
49	165276	1
50	262014	1
51	304038	1
52	409315	1
53	504916	1
54	642188	1
55	756278	1
56	807203	1
57	807203	0

Table 13. 6-digit combinations at $0: 58+$

i	comb.		
0	710424		
1	832534	1	
2	954513	1	
3	051144	1	
4	144831	1	
5	225274	1	

6	331435	1				
7	430511	1				
8	574450	1				
9	646207	1				
10	762324	1				
11	762324	0	14	041303	044900	1
15	194233	1				
12	811080	1	1			

| 20 | 611601 | 1 |
| :--- | :--- | :--- | :--- |
| 21 | 714464 | 1 |
| 22 | 876142 | 1 |
| 23 | 876142 | 0 |

Table 14. 6 -digit combinations at 0 : 59+

| i comb. | \|0|171118 1 | | |
| :---: | :---: | :---: | :---: |
| 0132935 | | 22.2665211 | 332757741 |
| 12795421 | 123431541 | 233445211 | 343532331 |
| 23442001 | 13421393 | 244562431 | 354042531 |
| 34133881 | 14421393 | 255579151 | 365784711 |
| 45780231 | 155531011 | 266125371 | 376468551 |
| 50851581 | 16635170 | 277862511 | 387128031 |
| 67315441 | 17759238 | 287862510 | 398493211 |
| 78150311 | 188151071 | 298361311 | 409214011 |
| 89451111 | 199652071 | 309577311 | 410618791 |
| 9064830 | 20000298 | | 420618790 |

Table 15. 6-digit combinations at $1: 00+$

i comb.	$6{ }^{6} 323641 \mid 1$	13405561	20693002	1
0724454	$7{ }_{7}^{7} 4541431$	143355770	21711011	1
18614321	84541431	151626841	22843759	1
29074251	955802651	162856111	23959331	1
30332171	106483101	1733915761	24019107	1
$4{ }_{4} 1260581$	117529301	184226131	25192847	1
	12 864301 1		26 192847	1

Table 16. 6 -digit combinations at 1 : 01+

Table 17. 6-digit combinations at 1 : $02+$

| i | comb. | |
| ---: | :--- | :--- | :--- |
| 0 | 049789 | |
| 1 | 125454 | 1 |
| 2 | 249724 | 1 |
| 3 | 336253 | 1 |
| 4 | 434262 | 1 |
| 5 | 534011 | 1 |
| 6 | 634963 | 1 |
| 7 | 707424 | 1 |
| 8 | 864346 | 1 |
| 9 | 904542 | 1 |
| 10 | 055374 | 1 |
| 11 | 109826 | 1 |
| 12 | 250174 | 1 |
| 13 | 393648 | 1 |
| 14 | 472334 | 1 |
| 15 | 522314 | 1 |

| \|634277|1 | ${ }_{33}^{33} 268803 \mid 1$ |
| :---: | :---: |
| $17{ }^{1752091} 1$ | 34374990 1 |
| 188102671 | 354144991 |
| 199180231 | 365415191 |
| 200451431 | 376871521 |
| $21.110766{ }^{1}$ | 38705422 |
| $22 \mid 250180{ }^{1}$ | 39879564 |
| 233902641 | 40988056 |
| 244076841 | 41038402 |
| 254076840 | 421840041 |
| 265177451 | 43203522 |
| 276213621 | 44345529 |
| 287411331 | 454652691 |
| 298251481 | 465020871 |
| 309210561 | 476031361 |
| 310212831 | 48724034 |
| | 49821852 |

50	936521	1
51	017643	1
52	107207	1
53	253850	1
54	308923	1
55	442758	1
56	535311	1
57	694302	1
58	704092	1
59	808352	1
60	956510	1
61	053083	1
62	154862	1
63	223165	1
64	372593	1
65	372593	0

Table 18. 6 -digit combinations at $1: 03+$

comb.	$17\|736565\| 1$	$35\|562882\| 1$	$53\|354324\| 1$
0197308	188770101	3669641111	544508061
12296531	199329211	377935121	551977
3141831	20001830	388565231	6826101
33141830	21117801	399544941	7104001
44722421	22233531	40001432	830638
55483111	2339	41159710	599632481
66532321	244145	4225313111	0059
77512381	25519185	43343330	110925
88531361	26	44453233	21
99949251	27	0	633441981
100039391	2881	46604627	407524
111360551	299	47775411	5529
122421501	30050445	48842291	666313061
133770201	31154051	49	677648021
	32205540	50005706	8809701
1558892631	33371497	51102313	699219
166976421	34428420	$52 \mid 240554$	70063039

Table 19. 6 -digit combinations at $1: 04+$

Table 20. 6-digit combinations at $1: 21+$

i comb.	10 988222 1	21 334242 1	
0729021	111245102	225304572	32 759044 1 1
18629541	$12 \mid 2015951$	236725231	339932722
29843291	133202711	247391221	340410151
30273321		259042892	3518853111
4283083	156485442	260665841	363384032
53547341	167305421	271260071	374192441
6430327	178886771	282528511	385201431
76205932	180119412	294263752	396231831
87323081		305221331	40 834127 2
9830515		316027021	

Table 21. 6 -digit combinations at $1: 22+$

i comb.		${ }_{27\|841140\| 2}$	
0373763	$14112015{ }^{1}$	289924501	
4063751	152370071	290815021	427101041
5339661	163312781		$43863144{ }^{1}$
3704802 2	175150932	313124502	449532021
48751211	186402161	324391231	45155572
59274501	197515521	335161141	46243962 1
60326541	208583011	347725092	473910801
72995382	210153112	358644251	485343332
83251571	221262881	369633441	49 642176 1
94414091	232004511	370731401	507720691
106504832	244212012	382095942	518575071
117177431	255930951	393362251	520084572
128835251	$\underline{26635180 \mid 1}$	40 443141 1	

Table 22. 6-digit combinations at $1: 54+$

| \|i comb. | \|10|655822| 2 | $21674041{ }^{2}$ | |
| :---: | :---: | :---: | :---: |
| 0834101 | 118102122 | 22802045 2 | 337393222^{2} |
| 10901482 | 120503082 | ${ }_{23} 9853241$ | 349405052 |
| 22924082 | 132153352 | $24122040{ }^{2}$ | 351266022 |
| 34280302 | 143101621 | 253554062 | $36324350 \mid 2$ |
| 4531451 | 155951052 | 265232652 | 374870941 |
| 57662742 | 167495322 | 277511122 | 386390812 |
| 6941733 | 179355642 | 28860390 1 | 398510542 |
| 7135251 | 180280501 | 290098112 | 400532152 |
| 83754112 | 192032592 | 302034222^{2} | 412508812 |
| 94303011 | $\underline{204889722}$ | $\bigcirc 31430329$ | 4236259711 |

Table 23. 6 -digit combinations at $2: 07+$

i comb. 1	4 4000508 ${ }^{2}$	$9 \mid 000822{ }^{2}$	14 900609 2
0273335	5296752	101141601	
14831582	64315162	$11379050{ }^{2}$	
26410512	76434942		
3803836 2	88332382	137814542	17

Table 24. 6-digit combinations at $10: 46+$

| i | comb. | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 452170 | 0 | | |
| 1 | 421660 | 0 | | |
| 2 | 462345 | 0 | | |
| 3 | 4 | 461315 | 432355 | 0 |
| 3 | 6 | 420151 | 0 | |
| 7 | 431757 | 0 | | |

[^0]: | 2651011 | 1 |
 | :---: | :---: | :---: |
 | 27 | |

 279510110
 280923441
 2910375011

 313255271

 | 32 | 446575 | 1 |
 | :--- | :--- | :--- | :--- |

 $33 \mid 4465750$

