273 research outputs found

    Three-points interfacial quadrature for geometrical source terms on nonuniform grids

    Get PDF
    International audienceThis paper deals with numerical (finite volume) approximations, on nonuniform meshes, for ordinary differential equations with parameter-dependent fields. Appropriate discretizations are constructed over the space of parameters, in order to guarantee the consistency in presence of variable cells' size, for which LpL^p-error estimates, 1p<+1\le p < +\infty, are proven. Besides, a suitable notion of (weak) regularity for nonuniform meshes is introduced in the most general case, to compensate possibly reduced consistency conditions, and the optimality of the convergence rates with respect to the regularity assumptions on the problem's data is precisely discussed. This analysis attempts to provide a basic theoretical framework for the numerical simulation on unstructured grids (also generated by adaptive algorithms) of a wide class of mathematical models for real systems (geophysical flows, biological and chemical processes, population dynamics)

    High-Order Residual-Distribution Hyperbolic Advection-Diffusion Schemes: 3rd-, 4th-, and 6th-Order

    Get PDF
    In this paper, spatially high-order Residual-Distribution (RD) schemes using the first-order hyperbolic system method are proposed for general time-dependent advection-diffusion problems. The corresponding second-order time-dependent hyperbolic advection- diffusion scheme was first introduced in [NASA/TM-2014-218175, 2014], where rapid convergences over each physical time step, with typically less than five Newton iterations, were shown. In that method, the time-dependent hyperbolic advection-diffusion system (linear and nonlinear) was discretized by the second-order upwind RD scheme in a unified manner, and the system of implicit-residual-equations was solved efficiently by Newton's method over every physical time step. In this paper, two techniques for the source term discretization are proposed; 1) reformulation of the source terms with their divergence forms, and 2) correction to the trapezoidal rule for the source term discretization. Third-, fourth, and sixth-order RD schemes are then proposed with the above techniques that, relative to the second-order RD scheme, only cost the evaluation of either the first derivative or both the first and the second derivatives of the source terms. A special fourth-order RD scheme is also proposed that is even less computationally expensive than the third-order RD schemes. The second-order Jacobian formulation was used for all the proposed high-order schemes. The numerical results are then presented for both steady and time-dependent linear and nonlinear advection-diffusion problems. It is shown that these newly developed high-order RD schemes are remarkably efficient and capable of producing the solutions and the gradients to the same order of accuracy of the proposed RD schemes with rapid convergence over each physical time step, typically less than ten Newton iterations

    전산공력음향학에서 Perfectly Matched Layer의 안정적인 흡수조건에 관한 연구

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 기계항공공학부 우주항공공학전공, 2016. 2. 이수갑.In Computational Aeroacoustics, non-reflective boundary conditions such as radiation or absorbing boundary conditions are critical issues in that they can affect the whole solutions of computation. Among these types of boundary conditions, Perfectly Matched Layer boundary condition which has been widely used in Computational Electromagnetics and Computational Aeroacoustics is developed by augmenting the additional term by an absorption function in the original governing equations so as to stably absorb the outgoing waves. Even if Perfectly Matched Layer is perfectly non-reflective boundary condition analytically, spurious waves at the interface or instability could be shown since the analysis is performed in the discretized space. Hence, the study is focused on factors that affect these numerical instability and accuracy with particular numerical schemes. First, stability analysis preserving the dispersion relation is carried out in order to achieve the stability limit of time-step size. Then, through mathematical approach, stable absorption coefficient and PML width are suggested. In order to validate the prediction of analysis condition, numerical simulations are performed in generalized coordinate system as well as Cartesian coordinate system.Chapter 1. Introduction 1 1.1 BACKGROUND 1 1.2 MOTIVATION 2 1.3 SCOPE OF PRESENT STUDY 3 Chapter 2. Governing Equations 5 2.1 LINEARIZED EULER EQUATIONS 5 2.2 DERIVATION OF PML EQUATIONS 6 2.2.1 Complex Change of Variables 6 2.2.2 Space-time Transformation 7 2.2.3 Stable PML Equations 9 Chapter 3. Numerical methodology 14 3.1 OPTIMIZED NUMERICAL METHOD 14 3.1.1 Fourier Analysis of High-order Spatial Discretization 14 3.1.2 Optimized Time Discretization Scheme 17 3.2 NUMERICAL STABILITY ANALYSIS 19 Chapter 4. Non-Reflective PML Conditions 24 4.1 END CONDITION OF PML BOUNDARY 24 4.2 ANALYTICAL APPROACH ON ABSORPTION COEFFICIENT 28 4.2.1 Maximum Absorption Coefficient 28 4.2.2 Minimum Absorption Coefficient 34 Chapter 5. Numerical Tests 38 5.1 STABILITY ANALYSIS RESULTS 39 5.1.1 Sound Propagating in Low Mach number Uniform Flow 40 5.1.2 Sound Propagating in High Mach number Uniform Flow 40 5.2 ACCURACY ANALYSIS RESULTS 42 5.2.1 Sound Propagating in Cartesian Grid System 42 5.2.2 Sound Propagating in Curvilinear Grid System 44 Chapter 6. Concluding Remarks 51 References 52 Abstract in Korean 56Maste

    Spatial eigensolution analysis of discontinuous Galerkin schemes with practical insights for under-resolved computations and implicit LES

    Get PDF
    The study focusses on the dispersion and diffusion characteristics of discontinuous spectral element methods - specifically discontinuous Galerkin (DG) - via the spatial eigensolution analysis framework built around a one-dimensional linear problem, namely the linear advection equation. Dispersion and diffusion characteristics are of critical importance when dealing with under-resolved computations, as they affect both the numerical stability of the simulation and the solution accuracy. The spatial eigensolution analysis carried out in this paper complements previous analyses based on the temporal approach, which are more commonly found in the literature. While the latter assumes periodic boundary conditions, the spatial approach assumes inflow/outflow type boundary conditions and is therefore better suited for the investigation of open flows typical of aerodynamic problems, including transitional and fully turbulent flows and aeroacoustics. The influence of spurious/reflected eigenmodes is assessed with regard to the presence of upwind dissipation, naturally present in DG methods. This provides insights into the accuracy and robustness of these schemes for under-resolved computations, including under-resolved direct numerical simulation (uDNS) and implicit large-eddy simulation (iLES). The results estimated from the spatial eigensolution analysis are verified using the one-dimensional linear advection equation and successively by performing two-dimensional compressible Euler simulations that mimic (spatially developing) grid turbulence

    Towards Verification of Unstructured-Grid Solvers

    Get PDF
    New methodology for verification of computational methods using unstructured grids is presented. The discretization order properties are studied in computational windows, easily constructed within a collection of grids or a single grid. The windows can be adjusted to isolate the interior discretization, the boundary discretization, or singularities. A major component of the methodology is the downscaling test, introduced previously for studying the convergence rates of truncation and discretization errors of finite-volume discretization schemes on general unstructured grids. Demonstrations of the method are shown, including a comparative accuracy assessment of commonly-used schemes on general mixed grids and the identification of local accuracy deterioration at intersections of tangency and inflow/outflow boundaries. Recommendations for the use of the methodology in large-scale computational simulations are given

    Proceedings for the ICASE Workshop on Heterogeneous Boundary Conditions

    Get PDF
    Domain Decomposition is a complex problem with many interesting aspects. The choice of decomposition can be made based on many different criteria, and the choice of interface of internal boundary conditions are numerous. The various regions under study may have different dynamical balances, indicating that different physical processes are dominating the flow in these regions. This conference was called in recognition of the need to more clearly define the nature of these complex problems. This proceedings is a collection of the presentations and the discussion groups

    Finite-volume WENO scheme for viscous compressible multicomponent flows

    Get PDF
    We develop a shock- and interface-capturing numerical method that is suitable for the simulation of multicomponent flows governed by the compressible Navier–Stokes equations. The numerical method is high-order accurate in smooth regions of the flow, discretely conserves the mass of each component, as well as the total momentum and energy, and is oscillation-free, i.e. it does not introduce spurious oscillations at the locations of shockwaves and/or material interfaces. The method is of Godunov-type and utilizes a fifth-order, finite-volume, weighted essentially non-oscillatory (WENO) scheme for the spatial reconstruction and a Harten–Lax–van Leer contact (HLLC) approximate Riemann solver to upwind the fluxes. A third-order total variation diminishing (TVD) Runge–Kutta (RK) algorithm is employed to march the solution in time. The derivation is generalized to three dimensions and nonuniform Cartesian grids. A two-point, fourth-order, Gaussian quadrature rule is utilized to build the spatial averages of the reconstructed variables inside the cells, as well as at cell boundaries. The algorithm is therefore fourth-order accurate in space and third-order accurate in time in smooth regions of the flow. We corroborate the properties of our numerical method by considering several challenging one-, two- and three-dimensional test cases, the most complex of which is the asymmetric collapse of an air bubble submerged in a cylindrical water cavity that is embedded in 10% gelatin

    Non-oscillatory Spatial Solutions Criterion for Convection-Diffusion Problem

    Get PDF
    The fact that the convection-diffusion problems are essential in nature is supported by the presence of such problems in vast number of applications in both science as well as engineering. Some of these applications involve the computational domain’s grid structure issues in the numerical experiment of fluid dynamics. The paper highlights the important role of convection-diffusion flow parameters in the construction of the grid structure. We propose the a priori criterion formulation to avoid non-oscillatory solutions which is based on both Peclet and grid&nbsp; numbers, and serves as a systematic approach in setting grid related parameters of interest. Aiming at a more efficient process in choosing grid structure for computational domain, the criterion functions as a standard which also eliminates heuristic process in the scalar concentration prediction. The test cases’ calculated results verify the consistency of the criterion

    Simulation of time-dependent compressible viscous flows using central and upwind-biased finite-difference techniques

    Get PDF
    Four time-dependent numerical algorithms for the prediction of unsteady, viscous compressible flows are compared. The analyses are based on the time-dependent Navier-Stokes equations expressed in a generalized curvilinear coordinate system. The methods tested include three traditional central-difference algorithms, and a new upwind-biased algorithm utilizing an implicit, time-marching relaxation procedure based on Newton iteration. Aerodynamic predictions are compared for internal duct-type flows and cascaded turbomachinery flows with spatial periodicity. Two-dimensional internal duct-type flow predictions are performed using an H-type grid system. Planar cascade flows are analyzed using a numerically generated, capped, body-centered, O-type grid system. Initial results are presented for critical and supercritical steady inviscid flow about an isolated cylinder. These predictions are verified by comparisons with published computational results from a similar calculation. Results from each method are then further verified by comparison with experimental data for the more demanding case of flow through a two-dimensional turbine cascade. Inviscid predictions are presented for two different transonic turbine cascade flows. All of the codes demonstrate good agreement for steady viscous flow about a high-turning turbine vane with a leading edge separation. The viscous flow results show a marked improvement over the inviscid results in the region near the separation bubble. Viscous flow results are then further verified in finer detail through comparison with the similarity solution for a flat plate boundary-layer flow. The usefulness of the schemes for the prediction of unsteady flows is demonstrated by examining the unsteady viscous flow resulting from a sinusoidally oscillating flat plate in the vicinity of a stagnant fluid. Predicted results are compared with the analytical solution for this flow. Finally, numerical results are compared with flow visualization and experimental data for the unsteady flow resulting from an impulsively started cylinder. Each algorithm demonstrates unique qualities which may be interpreted as either advantageous or disadvantageous, making it difficult to select an optimum scheme. The preferred method is perhaps best chosen based on the experience of the user and the particular application
    corecore