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1. Introduction 

The generic form of conservation equation is 

 

      ,
j j jt x j x xu s       ò

 (1) 

 

where 


 represents density, 


 conserved property, ju
 fluids components of velocity in with respect to spatial 

coordinates 
 1 2 3, ,x x x

 at time t , ò  represents concentration 


 diffusivity, and 
s  negative or positive sink of 


. 

Note that (1) simplifies into 

 

    0
j jt x xD    ò

, (2) 

 

if sink or source is negligible. This is convection-diffusion equation (CDE). The equation represents engineering 

problems arise in many models of processes from nature and technical applications. This situation will be always occur 

if the conserved property (dissolved or as particle, for instance) or a physical quantity as the temperature, is transported 

by a flow field. In mechanical engineering, CDE is important to determine, for example, the fraction of water-to-oil or 

the scalar concentration in petroleum pipes. The equation can be solved by means of finite-difference method. Since the 
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numerical solution of CDE involves the computer programme development, there is a necessity to study the spurious 

oscillations which are the due to several factors. Thus the focus of this paper is to formulate the criterion to prevent 

such oscillations in the solution of the convection-diffusion problem. In principle, the criterion acts as a guideline for 

setting up the solution to ensure that the variation of the conserved property is physically accurate. This applies in the 

case where only limited data is known regarding the variation of such property, such as the initial and boundary 

conditions. By using this criterion, the variation with respect the computational domain can be visualized correctly. 

Further processes besides the fow field are oftenly present in real systems, like chemical reactions. 

 

Mathematically, the substantial derivative in (2) is given by 

 

     
jt t x jD u     

. (3) 

 

We have, when (3) is substituted into (2), 

 

      0
j j jt x j x xu       ò

. (4) 

 

We can further simplify (4) into 

 

    0
j jt x x    ò

. (5) 

 

The simplified (5) is obtained when the fluids velocity is zero or negligible 
 0ju 

, or large diffusivity  ò  is 

taken into account. 

Expression (4) reduces to 

 

    0x x xu     ò
 (6) 

 

in the case of 1-dimensional  steady convection-diffusion problem, involving the concentration represented in the 

form of scalar 
.
 More details on these equations can be found in [1]. Interestingly, when zero sink or source is 

assumed as in (6), and the computational domain is of unit length, the boundary condition 
  00 

 and 
  01 

 

will result in 
0 

 throughout the whole domain. 

Despite the fact that the problem is that of one-dimension, it is widely accepted that the main difficulties arise 

already. Since the analysis for one-dimensional problems is comparably simple, one can construct for the problems 

numerical methods which produce, in a certain sense, perfect numerical solutions. Furthermore, the nature of growth of 


 becomes a challenge in computational methods; 


 sudden growth is a heavy test, in particular in choosing of the 

structure of computational grid with the ability to capture the growth over space and time. 

We establish a criteria that links interested flow parameter in CDE as the Peclet number Pe  to the compatible 

number of grid N . The formulation of the criteria is therefore important to predict the equation solution which is 

physically accurate. Numerical oscillation could happen if Pe  and N  are inappropriately paired [2]. Thus the 

formulation unifies the heuristic choices deduction in determination of N in the solution of CDE for contaminated 

fluids problem which results in reduced time in pre-computation activity. The work in the paper is presented following 

the approach developed in [2] and [3] to define both Peclet numbers Pe  and grid numbers N sequence. In general, we 

consider linear two-point boundary value problem, and apply boundary condition of first kind or Dirichlet boundary 

condition in the solution of the CDE. 

 

2. Methods and Materials 

2.1 Convection-diffusion Problems 

Bast there are many well formulated numerical methods such as lines method, spectral procedures, finite elements 

as well as finite differences [4] - [15] which serve as practical schemes to solve CDE. For example, [4] comparatively 
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studied 2-dimensional Lattice Boltzmann models (LB) with two variants which are generally considered as the most 

popular; those with five discrete lattice and nine discrete lattice velocities. 

The aspects of accuracy and practicability of LB model have been thoroughly considered in [5] and [6]. In 

particular, [5] focused on LB model of multiple-relaxation-time for the diffusion process that is axisymmetric, while [6] 

investigated the model for isotropic and anisotropic diffusion process. These two models are other variants of standard 

LB model. For the case in [6], [7], in solving nonlinear governing equations, is a proponent of LB model of finite-

difference. When scalar or flux jump is negligible, [8] dealt with curvy interfaces by, in conjunction with the Lattice 

Boltzmann method, introducing a second-order spatial accuracy numerical scheme.  

Galerkin estimate carries over to the subspace of the intermittent piecewise-quadratic space. A well-known a priori 

error approximation for such numerical scheme is systematically summarized in [9], while the high order alternating 

evolution estimate for the scheme is proposed by [10].  

Zhang et al. proposed that the higher order compact difference scheme (i.e. that of fourth-order) just needs 15 grid 

or meshing points [11] in order to solve CDE. Moreover, the scheme is successfully proven to be relatively 

computationally efficient in comparison to typical central difference scheme of the second-order [12]. 

It has become a trend to apply both the Sumudu transformation of homotopy perturbation and the transform of 

homotopy analysis as methods for solving CDE involving nonlinear fractions [13],[14]. The methods are based on high 

accuracy shifted Jacobi polynomials as operational matrices [14].The efficiency and reliability of them were proven in 

depth in [13]. 

One problem faced by much algorithms for the solution of CDE is the that they converge yet with subdomains 

overlap. It was a Schwarz waveform relaxation algorithm which succeeds in eliminating such problem [15]. 

At the initial stage of a numerical model development, particularly in the case of convection-diffusion analysis, it 

is crucial to ensure that computational mesh or grid for the purpose of discretizing the governing partial differential 

equations by using any of compact scheme, expansion of Taylor series, and polynomial fitting (i.e. the schemes for 

obtaining estimates of variables derivative in space and time coordinates) is appropriate [4]-[19]. Interpolation also is 

an aspect which is worthy of noting, which allows the variable values at undefined grid or mesh nodes to be determined 

in order to ensure the ‘smoothness’ of the solutions. In general, there are direct method [20]-[22] and iterative one [23]-

[26] which can be used in the determination of the solutions, both of which are crucial in solving discretized algebraic 

equations. 

Another popular method is called the shooting method. Its usefulness in predicting convection-diffusion properties 

is reflected by its various variants proposed by numerous reserchers [27]-[36]. For instance, Euler shooting method, 

Ritz method, Green function and Gaussian’s quadrature based methods [29], parallel shooting-method [28], and 

Goodman and Lance method [27]. This method is also capable of predicting non-linear property in the differential 

equations in highly complex problems. The details on this can be found in [30]. Examples of the complex problems are 

accessible via [31] and [32] concerning convection-diffusion as well as beam equations, respectively.  Other advantages 

of the shooting method include the visualization of the existence of multiple solutions in an indefinite Neumann 

problem [34], and the presence of kinks in the property profile in the solution of extended Fischer-Kolmogorov 

equation [33], for instance. At some extent, the method proves to produce outputs better than those produced via fixed-

point techniques [35], [36]. The shortcomings were extensively discussed in [29], in spite of the shooting method’s 

robustness. 

In the following section, the CDE is discretized on uniform grids, where the expansion factor 
1.er 

 A Fourier 

series is utilized to model the spatial error resulting from insufficient grid number. The criterion for predicting 


 

profile without non-physical oscillation is then formulated. 

 

2.2   Discretization and Solution of the Governing Equation 

We begin with the differential form of CDE as expressed in (6); 

 

    0x x xu     ò
. 

 

The boundary conditions are defined by 

 

 
 

0 0,

1 1.








 (7) 

 

The Peclet number Pe  is defined by 
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uL

Pe



ò . 

 

The Peclet number Pe  influence on the coefficient of diffusivity ò  was described in [24]. The concentration 

profiles are shown in Figure 1 for different Pe  range. 

 

 
Fig. 1 - Concentration profiles as a function of the Peclet number at different boundary conditions 

 

A grid covers the corresponding discretized solution domain in which x  being independent variables. The 

subintervals is defined as 
 1 /N h

. The full interval is 
 0,1x 

. Both N  and h  are integers. The definition of 

nodes is given by 

 

1i i e ix x r x  
 

 

where 
 1 1i N  

, iZ , and er  is the grid or mesh expansion factor. Obviously 1 1ix   . The grid is 

shown in Figure 2. 

 

 
Fig. 2 - Computational molecules 

 

At each node, the governing equation is approximated by replacing the partial derivatives with nodal values. The 

result is an algebraic CDE per node, in which the variables at that and immediate nodes appear as unknowns. The 

system of equations is expressed by 

 

P P m m p

m

C C Q  
, (8) 

 

where the equations are assigned at the grid nodes which are signified by P, and m  index runs over the 

neighboring nodes. Non-zero terms in the corresponding matrix C  in (8) are on its main diagonal, and the immediate 

diagonals above and below it (represented by iiC
, and RC

 for the upper and LC
 for the lower diagonal terms, 

respectively). By applying three-point computational molecules, we have an expanded version of (8) as 

 

1 1P P R i L i PC C C Q     
. (9) 

 

Three n n  array is the form in which the matrix elements in the equation are stored. The numerical solution of 

(9) does not need to be linearized due to linearity of convection-diffusion differential equation (i.e. only linear terms 

appear in the approximation by algebraic equation). 
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The discretization of diffusion term for both its outer and inner derivatives as well as convection terms uses central 

difference scheme (CDS) such that 

 

 
   

 

1 1

2 2

1 1

1

2

x xi i

x x i

i ix x

 


 

 

  

     


ò ò

ò

 (10) 

 

and 

 

 

 

1
1

2 1

1
1

2 1

i i
x i

i i

i i
x i

i i

x x

x x

 


 












 
   


   

 

ò ò

ò ò

 (11) 

 

(i.e. the discretization of diffusion term) as well as 

 

  1 1

1 1

i i
x i

i i

u u
x x

 
    

 


     

. (12) 

 

(i.e. the discretization of convection terms). The convection and diffusion terms contribute to the algebraic 

equation (8) coefficients in such a way that; 

 

  1 1 1 1 1

 

2
;

conv diff

R R R

i i i i i i

C C C

u

x x x x x x



    

 

 
  

ò

 

  1 1 1 1 1

 

2
;

conv diff

L L L

i i i i i i

C C C

u

x x x x x x



    

 

  
  

ò

 

 

 

.

conv diff

P P P

diff diff

R L

C C C

C C

 

  
 

 

In order to solve linear system of the algebraic equation (9), tridiagonal matrix in particular Thomas algorithm is 

applied. We choose that 

 

1.0,   1.0,   1eu r   
. (13) 

 

It is worthy of noting that numerical oscillation might occur if the grid number is minimized. The solution is 

therefore nonphysical (see illustration in Figure 3). 
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Fig. 3 - Insufficient computational domain’s grid number that leads to nonphysical oscillatory behaviour of 

concentration of scalar profile 


 

                             
2.3   Peclet and grid numbers sequences 

We set the low Peclet number Pe  range of interest as 
 0,100

, and a set of pairs representing the mathematical 

relationship between Pe  and grid number N  as 
 ,  .jiPe N

 

A sequence of iPe
 is defined by 

 

 
,iPe

 

 
 1 ,i iPe Pe p 

 

 
 2 1  ,i iPe Pe p 

 

 
 3 2 ,i iPe Pe p 

 (14) 

 . 

 . 

 . 

 . 

 
 1 ,n nPe Pe p

 
 

with the constants 
, i p Z

. 

We define a sequence of N  by 

 

 
 ,jN

 

 

1

1
 ,

j

j

N
N floor

q


 
  

   

 

1

2

1
  , 

j

j

N
N floor

q





 
  

   

 

2

3

1
  ,

j

j

N
N floor

q





 
  

   (15) 

 . 

 . 

 . 
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1 1
,m

m

N
N floor

q


 

  
   

 

where the constants 
, j q Z

. 

Let 

 

 1 11, 6, 3.125, 81,i j n m Pe N     
 

2,p q 

 (16) 

 

such that the sequence in (14) and (15) become 

 

 
3.125,6.25,12.5,25,50,100

  
 

and 

 

 
81,  41,  21,1  1,  6,  3

 
 

respectively. All 36 possible pairs 
 , Pe N

based on the elements in these sequences are considered as test cases, 

following the line used in [2] and [3]. 

 

2.4   Spatial Error Growth Model 

Substituting (10), (11), and (12) into (6); 

 

 

1 1 1 12

2

i i i i i

x

    


     


 . (17) 

 

The spatial error is defined as 

 

 
,N E  
 (18) 

 

where  and  are finite accuracy numerical solution from a real computer and exact solution of difference 

equation, respectively. Note that the numerical solution  satisfies the difference equation (17). A Fourier series model 

can be used to analytically represent the random variation of 


 with respect to space; 

 

 

  ,lik xx

l

x e e 
 

1,2,3...l 
, (19) 

 

where 
xe  is the amplification factor, lk

 is the wave number, and   is a constant. 

Lets 
xe  in (19) be proportional to x  when numerical oscillation occurs as represented in Figure 3. Thus it is 

sufficient to consider only the growth of .xe  Direct substitution of 
xe into the finite difference equation (17) gives 

 

 

       
2

2

x x x x x x x xxe e e e e

x

      
  


ò . (20) 

 

Divide (20) by 
xe , we have 

 

 

2

2

x x x xe e e e

x

          


ò  
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which, after some rearrangement, becomes 

 

 

 2 4

2

x

x
e x

e
x





 


  


 

ò ò

ò . 

 

If 
xe  presumably grows with respect to x , then

 

1,
x x

x

e

e








or simply 1xe  . Therefore, in order to have a 

non-growing error amplification, the criterion 

 

 

 2 4
1

2

xe x

x

    


 

ò ò

ò  (21) 

 

must be fulfilled. 

 

 

3. Results and Discussion 

Rewriting (21) in terms of Pe  and N ; 

 

1
1 2 4

1
1

1 2

1

Ne
N Pe Pe

N Pe




  
  

  


 . (22) 

 

We define 

 

1
1 2 4

1

1 2

1

Ne
N Pe Pe

G

N Pe




  
  

 


 . 

 

Thus (22) becomes 

 

                                                                   1G  .                             (23) 

  

The criterion in (23) was checked against all 36 possible pairs 
 ,  jiPe N

 based on sequences (14) and (15). The 

output is given in Table 1. For 3.125Pe  , all grid numbers in sequence (15) are appropriate in achieving physically 

accurate non-oscillatory solutions. This is indicated by G  being less than or equal to 1. The appropriate range of N  

shrinks by one element each time the next Pe  in sequence (14) is considered. 

The values of G  tabulated in Table 1 were verified by plotting the concentration 


 which are numerically 

calculated for Pe against N  as shown in Figure 4. It is confirmed now that in any case where 
1,G 

 the numerical 

oscillations appear, and the amplitudes grow with respect to .x  Note that in cases where 1G  , 


 profiles 

exponentially change with respect to x. The cases are represented by shaded plots where the integral 

 

 
1

0

x xd
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gives the area under the curve which is inversely proportional to Pe . 

 

Pe = 

3.125 

Pe = 

6.25 

Pe = 

12.5 

Pe = 

25 

Pe = 

50 

Pe = 

100 

N G N G N G N G N G N G 

3 

1
 

3 1
 

3 
1

 

3 

1
 

3 

1
 

3 

1
 

6 6 

1
 

6 6 6 6 

1

1 

1

1 

1

1 

1
 

1

1 

1

1 

1

1 

2

1 

2

1 

2

1 

2

1 

1
 

2

1 

2

1 

4

1 

4

1 

4

1 

4

1 

4

1 
1

 

4

1 

8

1 

8

1 

8

1 

8

1 

8

1 

8

1 1
 

Table 1. Range of grid numbers N  that fulfils to the criterion in (23) where 0.1    

 

  

3.125Pe   

 

6.25Pe   

 

12.5Pe   

 

25Pe   

 

50Pe   

 

100Pe   

S
ca

la
r 

C
o

n
ce

n
tr

a
ti

o
n

, 
φ

 

      

   
 

  

     
 

      

      

      

x 

Fig. 4 - Concentration profile 


 at Pe  as in sequence (14) 



Aslam et al., International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 247-257 

 

 256 

4. Final Remarks 

We devised a criterion to avoid numerical oscillation in the prediction of concentration profile the criterion 

improves the way we understand   contribution towards oscillation, and thus serves as a qualitative guideline for the 

convection-diffusion solutions. The criterion also gives the minimum values of   below which non-physical solutions 

occur. It opens the possibilities of choosing type of grid structure in computational fluid dynamics, obtaining ‘flow 

parameters-grid quality’ relationship, as well as investigating the influence of   on other numerical error patterns, via a 

more general framework. 
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