6,667 research outputs found

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    Formal Generation of Executable Assertions for Application-Oriented Fault Tolerance

    Get PDF
    Executable assertions embedded into a distributed computing system can provide run-time assurance by ensuring that the program state, in the actual run-time environment, is consistent with the logical stage specified in the assertions; if not, then an error has occurred and a reliable communication of this diagnostic information is provided to the system such that reconfiguration and recovery can take place. Application- oriented fault tolerance is a method that provides fault detection using executable assertions based on the natural constraints of the application. This paper focuses on giving application-oriented fault tolerance a theoretical foundation by providing a mathematical model for the generation of executable assertions which detect faults in the presence of arbitrary failures. The mathematical model of choice was axiomatic program verification. A method was developed that translates a concurrent verification proof outline into an error-detecting concurrent program. This paper shows the application of the developed method to several applications

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified

    A Grid-Enabled Infrastructure for Resource Sharing, E-Learning, Searching and Distributed Repository Among Universities

    Get PDF
    In the recent years, service-based approaches for sharing of data among repositories and online learning are rising to prominence because of their potential to meet the requirements in the area of high performance computing. Developing education based grid services and assuring high availability reliability and scalability are demanding in web service architectures. On the other hand, grid computing provides flexibility towards aggregating distributed CPU, memory, storage, data and supports large number of distributed resource sharing to provide the full potential for education like applications to share the knowledge that can be attainable on any single system. However, the literature shows that the potential of grid resources for educational purposes is not being utilized yet. In this paper, an education based grid framework architecture that provides promising platform to support sharing of geographically dispersed learning content among universities is developed. It allows students, faculty and researchers to share and gain knowledge in their area of interest by using e-learning, searching and distributed repository services among universities from anywhere, anytime. Globus toolkit 5.2.5 (GTK) software is used as grid middleware that provides resource access, discovery and management, data movement, security, and so forth. Furthermore, this work uses the OGSA-DAI that provides database access and operations. The resulting infrastructure enables users to discover education services and interact with them using the grid portal

    The role of concurrency in an evolutionary view of programming abstractions

    Full text link
    In this paper we examine how concurrency has been embodied in mainstream programming languages. In particular, we rely on the evolutionary talking borrowed from biology to discuss major historical landmarks and crucial concepts that shaped the development of programming languages. We examine the general development process, occasionally deepening into some language, trying to uncover evolutionary lineages related to specific programming traits. We mainly focus on concurrency, discussing the different abstraction levels involved in present-day concurrent programming and emphasizing the fact that they correspond to different levels of explanation. We then comment on the role of theoretical research on the quest for suitable programming abstractions, recalling the importance of changing the working framework and the way of looking every so often. This paper is not meant to be a survey of modern mainstream programming languages: it would be very incomplete in that sense. It aims instead at pointing out a number of remarks and connect them under an evolutionary perspective, in order to grasp a unifying, but not simplistic, view of the programming languages development process

    Transparent Fault-tolerance in Parallel Orca Programs

    Get PDF
    With the advent of large-scale parallel computing systems, making parallel programs fault-tolerant becomes an important problem, because the probability of a failure increases with the number of processors. In this paper, we describe a very simple scheme for rendering a class of parallel Orca programs fault-tolerant. Also, we discuss our experience with implementing this scheme on Amoeba. Our approach works for parallel applications that are not interactive. The approach is based on making a globally consistent checkpoint from time to time and rolling back to the last checkpoint when a processor fails. Making a consistent global checkpoint is easy in Orca, because its implementation is based on reliable broadcast. The advantages of our approach are its simplicity, ease of implementation, low overhead, and transparency to the Orca programmer. 1
    • …
    corecore