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Abstract: Executable assertions embedded into a distributed computing system can 
provide run-time assurance by ensuring that the program state, in the actual run-time 
environment, is consistent with the logical stage specified in the assertions; if not, then 
an error has occurred and a reliable communication of this diagnostic information is pro
vided to the system such that reconfiguration and recovery can take place. Application- 
oriented fault tolerance is a method that provides fault detection using executable asser
tions based on the natural constraints of the application.

This paper focuses on giving application-oriented fault tolerance a theoretical foun
dation by providing a mathematical model for the generation of executable assertions 
which detect faults in the presence of arbitrary failures. The mathematical model of 
choice was axiomatic program verification. A method was developed that translates a 
concurrent verification proof outline into an error-detecting concurrent program. This 
paper shows the application of the developed method to several applications.
Index Terms - Formal Methods, Fault Tolerance, Program Verification, Concurrent Sys
tems, Algorithms



I. INTRODUCTION
It is important for both life critical, and non-life-critical distributed systems to meet their specifica

tion at run time [LaLi92]. Large, complex, distributed systems, are subject to individual component fail
ures which can cause system failure. Fault tolerance is an important technique to improve system reliabil
ity. The fault detection aspect identifies individual faulty components (processors) before they can affect, 
negatively, overall system reliability.

A failure occurs when the user observes that a resource does not perform as expected. The failure is 
the result of some part of the resource entering a state which is contrary to the specification of the part. 
The cause of the resource entering such a state is referred to as a fault. When a system can recover from a 
fault by either masking the fault and some how let with the system proceed without failure or by forcing 
failures to exhibit themselves then the system is said to have fault tolerance. Reliability is a measure of 
the probability that a specific resource will perform a required function for a specified period of time, usu
ally the item’s life time, even in the presence of faults. The higher the probability the higher the reliabil
ity of the system is considered to be.

Many methodologies for improving system reliability have been developed throughout the years. 
These different methodologies fall into two basic groups: fault masking techniques and concurrent tech
niques. Early attempts at improving system reliability used fault-masking methods; these methods make 
the hardware tolerant of faults through the multiplicity of processing resources. In contrast, concurrent 
fault detection methods attempt to locate component errors which can lead to system failure. Once the 
faults are identified, reconfiguration and recovery [YaHa84] are used to deal with the fault. This paper 
focuses on detecting the occurrence of errors. Recovery and reconfiguration are different issues. Work in 
concurrent detection methods include self-checking software [YaCh75] and recovery blocks [Rand75] 
which instrument the software with assertions on the program’s state, watchdog processor [Aman78], 
which monitors intermediate data of a computation, and algorithm-based fault tolerance [HuAb84] which 
imposes an additional structure on the data to detect errors. These methods define structure for fault toler
ance, but do not, generally, give a methodology for instantiating the structure.

Application-oriented fault tolerance [McNi92], by contrast, provides a heuristic approach, based on 
the “Natural Constraints” , to choosing executable assertions from the software specification. These exe
cutable assertions [YaCh75] in the form of source language statements are be inserted into a program for 
monitoring the run-time execution behavior of the program. The general form is as follows:

if ASSERTION then ERROR

Executable assertions are used to ensure that the program state, in the actual run-time environment, is 
consistent with the logical state specified in the assertion; if not, then an error has occurred and a reliable 
communication of this diagnostic information is provided to the system such that reconfiguration and 
recovery can take place. The heuristics for selection of the actual executable assertions are based on three 
metrics of progress, feasibility, and consistency.

What the earlier work lacks is a theoretical foundation built upon mathematical models and theories. 
In general, theoretical foundations can provide (1) criteria for evaluation, (2) means of comparison, (3) 
theoretical limits and capabilities (4) means of prediction, and (5) underlying rules, principles, and struc
ture. This paper focuses on giving the application-oriented fault tolerance paradigm a mathematical 
model and then using the structure of the mathematical model to generate executable assertions which 
detect errors in the presense of arbitrary failures. The mathematical model of choice, in this paper, is
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axiomatic program verification.

This paper is organized as follows. In Section 2 we provide a brief overview of concurrent 
axiomatic proof systems which form the basis for our GAA system. Section 3 describes the HAA proof 
system for distributed programs and specifies the translation of a proof outline in this system to a error
detecting program through consistency. Section 4 presents several illustrative examples of the translation. 
In Section 5, we assess the concept of formal methods for generation of fault-tolerant programs.

II. A SHORT BACKGROUND ON PROGRAM VERIFICATION
The axiomatic approach to program verification is based on making assertions about the program 

variables before, during and after program execution. These assertions characterize specific properties of 
interest about program variables and relationships between them at various stages of program execution. 
Program verification requires proofs of theorems of the following type:

<P>S<Q>

where P and Q are assertions, and S is a statement or sequence of statements of the language. The inter
pretation of the theorem is as follows: if P is true before the execution of S and if the execution of S ter
minates, then Q is true after the execution of S. P is said to be the precondition and Q the postcondition 
[Hoar69]. P and Q are also referred to as a program specification.

In program verification logical assertions are determined that describe the effect of each statement 
that comprises program S. Each of these logical assertions must hold if the cumulative effect of these 
statements results in the execution of S satisfying the logical assertion Q. This collection of assertions is 
normally referred to as the “verification proof outline” .

As a model axiomatic proof system, consider the work of [LeGr81], which is used for Hoare’s 
model of concurrent programming, Communicating Sequential Processes (CSP) [Hoar78]. In this system, 
the first step is to prove appropriate properties about the individual processes in isolation. The individual 
statement axioms are omitted here except for the communication and parallel inference axioms.

The parallel inference rule is the following:

(Vi: <Pj> Si<Qj>) satisfied and interference -  free 
<(Vi: P0> [Hi=i:n Ai:Si]<(Vi:Qi)>

(parallel)

The parallel rule (where Aj is the process label of the process that contains Sj) implies that construction of 
the proof of a parallel program can be derived from the partial correctness properties of the sequential 
programs it is comprised of. However, the sequential components of the parallel program have communi
cation commands. The communication axiom is as follows:

<P> a  <Q>

where a  is a communication command.

(communication)
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The communication axiom implies that full concurrent proofs of the appropriate properties of indi
vidual processes require assumptions to be made about the effect of the communication commands. A 
“satisfaction proof” is then used to show that these assumptions are “legitimate” . Let us examine the 
proof outline of the matching communication pair

P i- : [•••<Pi>P2?x<Qi>]
Pi-: [ • • • <?i>P\ !y<Q2>]

The effect of these two communication commands is to assign y to x. This implies that Qi a  Q2 is true 
after communication if and only if

(Pi A P2) -> (Ql a  Q2) ^

A “satisfaction proof” is such that the above is proven for every matching communication pair. This is 
called the rule of satisfaction.

The proof system in [LeGr81] (GAA proof system) makes use of global auxiliary variables. Auxil
iary variables may affect neither the flow of control nor the value of any non-auxiliary variables. Other
wise, this unrestricted use of auxiliary variables would destroy the soundness of the proof system. Hence, 
auxiliary variables are not necessary to the computation, but they are necessary for verification. Auxiliary 
variables are used to record part of the history of the communication sequence. Shared reference to auxil
iary variables allow for assertions relating the different communication sequences. This requires a proof 
of “non-interference” . Any update of a global auxiliary variable on any processor is assumed to be 
immediately known to all processors.

Other axiomatic proof systems are in [ApRo81] and [Soun84]. The proof system in [ApRo81] uses 
local auxiliary variables. The proof system in [Soun84] uses communication sequences. A communica
tion sequence for process i is the sequence of all communications that process i has so far participated in. 
Each process i has a variable denoting its communication sequence, which is updated for each communi
cation. This allows for proof rules that can make inferences about the communications sequences. Thus, 
it is sufficient to do only sequential proofs of each component process in a parallel program. Our work in 
[LuMc91] shows that these three proof systems are equivalent in that they allow for the same properties 
to be proven. However, it is easier to reason in some systems more than others.

III. APPLICATION-ORIENTED FAULT TOLERANCE
Application-oriented fault tolerance works on the principle of testing at run time the intermediate 

logical assertions from the verification proof outline i.e. application-oriented fault tolerance works on the 
following principle:

If we test and ensure intermediate results of a program’s computation meet its specification, the 
end solution meets its specification if the intermediate results meet their specification. If processor 
errors occur that do not affect the solution, then they are not errors of interest. Program verifica
tion provides these tests.

fThe notation pj?x in CSP notation denotes receiving a message into variable x from process p\. Correspondingly, pj !y 
denotes sending a message with value y to process py 
$ This stands for the predicate Qi aQ2 with all instances of y replaced by x
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The above principle yields a formal statement of application-oriented fault tolerance; we generate 
the executable assertions from the logical assertions used in the verification proof outline of <P>S<Q>. 
The executable assertion generated corresponding to any logical assertion Qj from the verification proof 
outline is the following:

if -iQi then ERROR

Formally, this ensures that if P is true before the concurrent program S begins execution, S tests at run 
time that S satisfies the specification as defined by P and Q, by using the embedded executable assertions 
generated from the assertions of the verification proof. Conversely, the assertions of the verification proof 
represent the properties that must be satisfied by the run-time environment; an error that causes the execu
tion of the program not to satisfy the specified assertions will be flagged as an error by the executable 
assertions.

The reader may be suspicious that some program S may be changed into a program S' by a error that 
satisfies the specification as defined by P and Q. Consider, as an example, a program S computing some 
value x with postassertion <Q> = <x > 0>. Suppose that S should compute x = 3. A program S' may 
actually compute x = 4. The postcondition is still satisfied, although, the value is not what was intended. 
This is not a problem with the validity of the postassertion, it is a weakness of the specification. If x = 3 
was what was really intended, then the proper postassertion should have been <Q> = <x = 3>. If <Q>
<x > 0> is a sufficient specification for the application at hand, then there is no problem.

To eliminate confusion between the testing of intermediate results (via logical assertions) for cor
rectness with respect to the algorithm and the evaluation of the executable assertions derived from the 
verification proof in the run-time environment we will refer to the former as the verification environment 
and the latter as the (distributed) operational environment.

To summarize, the transformation of an algorithm to an error-detecting algorithm involves using the 
assertions of the verification proof as executable assertions that are to be embedded into the algorithm. In 
order to accomplish this, however, we need to develop some additional theory: (A) a verification system 
that more closely models the distributed operational environment, (B) operational communication of state 
information through consistency, and (C) improving run-time efficiency.

3.A. History of Auxiliary Variable (HAA) Verification System
The logical assertions from the GAA verification environment cannot be directly used as executable 

assertions in the distributed environment; in the distributed environment, there are no global variables. 
Thus, to evaluate, at run time, logical assertions containing global auxiliary variables, an explicit updating 
mechanism must be created. Here we develop the verification proof system (HAA) in which updates of 
global auxiliary variables are exchanged at communication time. This matches, more closely, the opera
tional environment. We show every verification proof outline in the GAA proof system has the same 
properties in the HAA proof system i.e. satisfaction and non-interference; thus, implying that the HAA 
proof system has the soundness and completeness properties of the original GAA proof system. The exis
tence of the HAA proof system allows for proofs that can be directly transformed to executable assertions 
in the run-time environment.

Developing the HAA system requires us to keep track of which processes communicate with which 
other processes. Each process needs to record its global auxiliary variable updates with respect to all
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other processes. When communication occurs between two processes, they need to exchange the updates 
and locally apply the updates. This is formalized in the following definitions.

Definition 3.1: For a process p-v hj denotes the sequence of all communications that process p\ has so 
far participated in as the receiving process. Thus, hj is a list consisting of tuples (these are different from 
the [Soun84] tuples; all future reference to tuples will refer to the following tuples) representing matching 
communication pairs of the form

[p,(Var,Val),T,C]

where p is a process from which p\ receives from, Var is the variable that p is transmitting to p\ with for
mal parameter VaL T denotes the time at which the value Val was assigned to variable Var and C denotes 
the communication path. In Section B, we will use the path notion.

Since we have several processes running in parallel and there exists no concept of a global time, the 
time T is a local time represented by an instantiation counter that is incremented by one after every execu
tion of a statement. This permits an ordering (time-stamping) for all updates of the GAVs within each 
process.

To be able to account for the different operations performed on the auxiliary variables, each process 
has to keep a history of variable updates with respect to the last communication with the other processes. 
These variable sets are described using the subscript of the corresponding process.

Definition 3.2: Let gy depict the GAV set in process p\ with respect to process i.e., gy contains the 
changes that were made to the GAVs in p\ since the last communication with py G; is the set of sets 
gio, gn,..., gj(N_i) in process p\. Thus, when two processes p\ and py communicate, the respective subsets, 
gyG Gj and gyG Gy are exchanged.

When two processes p\ and pj communicate, where py is the sender, pj will augment the communication 
by sending the values of global auxiliary variables that pj updated or received updates of between the last 
and current communications between p x and p y  We batch the changes made to the local copies of the 
global auxiliary variables by pj since the last communication (with any other processor) in gy. Before a 
communication, the function y/ applies changes to all gjk’s and gy is reset to null to collect future changes. 
Definition 3.4 formally describes the communication of gy. Definition 3.5 formally describes how pro
cess pj updates Gi based on the communicated gy after communication has taken place.

Definition 3.3: The actual set of GAVs to be sent during a communication between px and p̂  where pj 
is the sender, is determined based on the variables in gy, i.e., all the variables that were updated in pj 
since the last communication with any process. The set gjy is updated every time an assignment to a GAV 
takes place in pj and reset at communication time to the empty set. The following function ^(Gj,gjj) 
describes the update of all variable histories before a communication.
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Pi: (V k ,0 < k < N -l)(V g jkeGj)
[ if k * j then gj.+tj <- (gjTk -  gJ)ugy+lj else if k = j then gJ+tj <- 0  ]

where T represents the local time any last communication and T + tj represents the local time of the cur
rent communication.

The following definition formally defines the semantics of global auxiliary variable communication.

Definition 3.4: The primary communication is a matching communication pair for the exchange of 
variables between processes which are not GAVs. It can be described by a tuple [pj,(Var, Val),Tj = t,j] 
where t is the current value of the local time. It is easy to see that all communications in the GAA system 
are primary since GAVs are updated globally. An augmented communication permits the exchange of the 
GAVs after a primary communication occurs.

For each process p\ after an augmented exchange with pj, updates its set of GAVs in Gj with the new 
values received. This interchange is described in Figure 3.1 for two processes p„ pj and one matching 
communication pair within the execution sequence of the two processes.

Definition 3.5 : The updates performed in the different processes are described by a function 0(Gj, gy)
on the set of the GAV history and the variables to be updated. The actual update function <j> is now

T+t'defined on all the subsets within Gj on tuples of the form [Pj, gy, gvarj ‘,T + tj, j], 

p i: (Vk, 0 < k < N -  l)(Vgik6 Gj)
[ if k & j then g^+l‘ <— (g£ -  gvar^ugvar?*1' else if k = j then gy+l' <— gvar?+t‘ ]

where T represents the local time of the last communication and T + t; the local time of the current com
munication.
When processes p, and pj communicate, all old values in the set gy will be replaced by the new variables. 
This operation removes all elements that the two sets have in common and then combines them with the 
updated GAVs. The only exception will be the set gy when processes pj and pj are communicating. In 
that case all old variables need to be removed and be replaced by the new values.

It can be seen that the so-called “global auxiliary variables” in the HAA system are not really 
global in the sense that all processes have the same values of the variables at all times. Indeed, it is likely 
that at the end of the process execution some processes that ran in parallel will have different values 
within their set of GAVs. We show that because of non-interference, this is not a problem with respect to 
the proof system.

Within a process execution, two communicating processes can have arbitrary interleavings of their 
statements up to the communication, but are conceptually synchronized at the communication point. The 
assertions will not interfere with each other due to the non-interference property of the GAA system 
which provides for arbitrary execution orders. Since two (or more) processes will only change (write 
onto) the same global auxiliary variable if they have to communicate with each other, they will also 
exchange other variables/data in that process and the values of the auxiliary variables will be available for 
the other process at the critical point: right after a communication takes place. Thus, sending only the
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For process Pj:
/* execute arbitrary set of statements excluding communication but including assignments to auxiliary variables */ 
Su ; <Ti :=1>
Si2» <Tj:=Tj + 1>
*»• ?

Sik; <Ti:=Ti + 1}
/* update the auxiliary variables */
Gi <— y(G|.gn); <Tj:=Ti + 1>
/* perform communication with process Pj; the first communication represents the actual communication */
/* the next two communications represent the exchange augment of the auxiliary variables */
Pj ? V ; <Tj:=k>
Pj ? 8ji * <T\;=k+l>
Pj I gy ; <Ti:-k+2>
/* update the auxiliary variables */
Gj ^(Gi,gji); <Ti:=k+3>

For process Pj:
/* execute arbitrary set of statements excluding communication but including assignments to auxiliary variables */ 
Sji; <Tj :=1> 
s j2; <Tj:=Tj + 1>

ĵk> <Ti:~Tl + ^
/* update the auxiliary variables */
Gj <- ^(Gj.gjj); <Tj :=Tj + 1>
/* perform communication with process P̂ ; the first communication represents the actual communication */ 
/* the next two communications represent the exchange augment of the auxiliary variables */
Pi ! V ; <Tj:=k>
Pi ! gjj; <Tj:=k+l>
Pi ? gy ; <Tj:=k+2>
/* update the auxiliary variables */
Gj <— ^(Gj,gjj); <Tj:=k+3>

Figure 3.1. An HAA proof outline for one matching communication pair.

history of the global variable updates instead of immediately providing the other process(es) with the lat
est information will not cause any problems, since the values of the variables will be available at the com
munication points, where they are in fact provided.

An example of three possible process execution sequences that are subject to non-interference are 
shown in Figure 3.2. For any two processes, non-interference will guarantee that the execution order of 
the two processes or any arbitrary interleaving of them will not invalidate the assertions made on the 
respective process statements.
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Figure 3.2. Some possible process execution sequences before communication takes place.

The proofs of Appendix A formally show how non-interference and the rule of satisfaction can be 
used to show that the soundness and completeness properties of the original GAA system will hold in the 
new HAA proof system.

Theorem 3.1: The history of auxiliary variables approach (HAA) retains the properties of the global 
auxiliary variables approach (GAA).

Proof: Theorems A.l, A.2, A.3, and A.4 show that the conversion from GAA to HAA preserves the 
inference rules as well as soundness and completeness based on the preservation of non-interference and 
satisfaction. □

3.B. Reliable Communication of State Information

The HAA proof system provides for direct transformation of assertions from the verification envi
ronment into executable assertions for the non-faulty distributed operational environment, However, we 
are concerned with the distributed faulty environment. Thus, it is necessary to ensure that faulty proces
sors cannot fool executable assertions by incorrect augmented communication of g's through sending 
inconsistent messages to different processors. It is necessary for this to be detected. This is the purpose 
of consistency executable assertions. Mathematically, this can be described as follows:

Definition 3.6: For a non-faulty process p\, if there exists any two tuples tj, t2 e h[ such that

t1 = [j,(VarIVal1),T,C1] 

t2 = U.(Var,Val2),T,C2]

then ifValiOVal2 the system is said to be inconsistent otherwise the system is said to be consistent, o is
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defined as a set of functions such that each o 'e o  is of functionality dt —> {T, F} where dt is an abstract 
data type. Examples of o' are c , -iprefix, or some other operator appropriate to the choice of the data 
type of Var. Where no ambiguity results, we will refer to a particular o ' simply as o.

The strongest motivation for the consistency condition is to supplement the power of the executable 
assertions derived from the HAA system. When the value of a variable computed in time T is communi
cated to a set of processors on more than one path, there will be two or more tuples in hj that satisfy the 
precondition. Under a bounded number of faults, the consistency definition of 3.6 ensures that a non- 
faulty processor receives a consistent set of input values for its executable assertions, otherwise, 
Val| oVal2, and an inconsistent system can be detected. The degree of fault tolerance is based on stan
dard network flow arguments and is not repeated here. It should be noted that all faults in communication 
links are mapped to a processor, thus it is enough to assume only faulty processors.

Consistency does not have to be explicit. In other words, an error-detecting program may have to 
explicitly add code to implement consistency. This can be done in many ways. There are classes of prob
lems that have the property of natural redundancy in the problem variables. This implies that there are 
types of errors that if they occur is state i, the eventually, at some state j (where j > i), we have that state j 
satisfies the properties as defined by the intermediate assertions of a verification proof, despite the error 
that had occurred in stage i. If a program variable is naturally redundant then this means that this pro
gram variable can be constructed from other variables. Natural redundancy will be used when we con
sider the Branch and Bound example of Section IV.

3.C. Run-Time Efficiency Considerations
The transformation from the HAA verification environment to the operational environment 

described above is optimal in the sense that all violations of the program’s specification (in terms of the 
postconditions on each statement and within the limits of consistency) are caught under a bounded num
ber of faults. However, when run-time efficiency is considered, not all of these assertions, nor all of the 
communicated GAVs are necessary. These two aspects of reducing complexity are treated as follows:
♦ Assertions involving local variables to a particular process which are necessary in the verification 

environment are useless in the distributed operational environment. Since the unit of failure and 
reconfiguration is at the processor level, a processor cannot be trusted to diagnose itself as faulty or 
fault-free. Thus, assertions using only local variables incur a run-time overhead that is not neces
sary and all such assertions can be deleted.

• The fault coverage of certain assertions using the GAVs may be subsumed. Thus, many of the 
remaining assertions may be removed as well. Likewise, removing some of the assertions may 
result in certain GAVs no longer being required. Furthermore, certain assertions may be too expen
sive to evaluate in the operational environment and may be deleted for that reason.

3.D. Section Summary
This section showed how the properties of the GAA system are preserved when a conversion from 

this formal system into another occurs; non-interference is the critical point that assures that satisfaction, 
soundness and completeness can be retained in the new system. The new system is important since it 
simplifies the operations on sets of executable assertions which are used to provide fault tolerance in a 
distributed operational environment. We then showed how the HAA system can be transformed, through 
consistency, into an operational system and made some comments on run-time efficiency.
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We have applied this transformation to several concurrent applications ranging from concurrent 
database transactions schedules [LuSM92a], concurrent sorting [LuSM92b] and concurrent branch and 
bound [LuSM92c]. We have obtained performance and error coverage data on each. The next section 
presents example applications of this system including its verification, transformation, measures of its 
efficiency, and error coverage.

4. EXPERIMENTAL RESULTS
The transformation on an application to an error-detecting code is straightforward; however, there 

are numerous applications in which various heuristics improve run-time efficiency. The applications 
selected for this section reflect this diversity in the use of the transformation.

4.A. Distributed Database Concurrency Control
Distributed database applications are a wide use of distributed systems that can be implemented on a 

network of workstations. Fundamentally, processes execute transactions which perform Lock, Read, 
Write, and Unlock operations on entities stored in the database [BeGo82], The interleaving of operations 
from the various transactions, or schedule of operations, performed concurrently must be equivalent to the 
effects of executing the transactions serially [EGLT76]. This is most commonly achieved by the Two- 
Phase Locking protocol (transactions finish locking entities before unlocking any). In the system model, 
m transaction manager (TM) processes execute transactions which access data uniquely held by n data 
manager processes each controlled by lock manager (LM) processes. This example creates a program 
which detects faults in the scheduling part of the lock manager.

The verification of the two-phase locking protocol in the GAA system is straightforward (the inter
ested reader is referred to Appendix B.l). The assertion of interest is an invariant, I, that expresses that 
the transactions are well-formed^ and that transactions do not simultaneously modify the same entity. 
This requires assertions on two auxiliary variables: schedules, where 0 < i - l < N - l ,  denotes the sched
ule of operations as ordered by the lock manager on process i and SG denotes the partial order of depen
dencies on the access of the shared entities by the transactions.

In conversion from the verification proof in GAA to HAA, gy for any two processors i and j is

gij = {{scheduler I 0 < r < N -  1}, SG}

Since coordinating transaction managers will request use of other entities managed by other lock man
agers, then any lock manager i may receive values of schedule), where i * j. Consistency is checked by 
showing that the last update of schedule,-, where 0 < r < n -  1, coming from TMS is a prefix of the last 
update of schedule,- coming from TM, or vice-versa. Thus, the o operator for consistency is simply the 
prefix operation on two schedules: schedule^ gsi and schedulere g(i of lengths L, and L2, respectively and 
L, < L2 is defined as follows:

o = ->(3k(0 < k < L, -  1 a  select(k, schedule,egsi) * select(k, schedule^ g„)))

The function select is used for determining the kth element of the schedule sequence.

t  A well-formed transaction does not attempt to lock an entity that has already been locked nor does it read or modify an 
entity unless it has already locked that entity.
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The transaction managers are being used to test the executable assertions. By the noninterference 
property of the HAA system, the transaction managers only test available data; no extra communication is 
forced to obtain a global picture of the entire system. The lock managers use consistency to ensure that 
the other lock managers are correctly sending gy’s to a particular transaction manager.

Since we evaluate the invariant, I, at run-time in all processors, we can detect any schedule that vio
lates I under a consistent system. Thus, we need to derive bounds on the number of faulty processors 
such that consistency is maintained.

Analysis of the expected error coverage is important for any error-detecting algorithm. It is 
assumed that a transaction manager uniformly requests access to data at all sites. This implies that a 
transaction can communicate with all lock managers. We have shown [LuSM92a] that if we assume n 
lock managers and m transaction managers that the system can handle n-1 faults occurring on the proces
sors with the lock managers if no transaction managers fail or the system can tolerate m-1 faults occurring 
on processors with the transaction managers if no lock managers fail.

From the construction of gy by the functions y/ and <p the actual set of auxiliary variables sent during 
a communication between LMj and TMj is the differences in scheduler, where 0 < r < n -  1, and SG sent 
in the previous communication between LMj and TMj and the current communication. Since a transac
tion manager uniformly requests access to data at all sites, then the average difference between old and 
new schedules is m entries.

SG is updated when there are two transactions that request access to a common entity. In the worst 
case, there are m entities in common. Therefore, SG increases by m elements. In the basic algorithm 
there is one action communicated between LMj and TMj. Let this message length be denoted by B. In 
the transformed algorithm the average message length is (nm+m+l)B giving an overhead of (nm+m+1) = 
O(nm).

On the surface, this may seem like an a great deal of overhead. However, the major part of the cost 
of communication is in the connection set up time between the two communicating processes and not in 
the actual transfer. Therefore, the additional cost of piggybacking auxiliary variables is minimal. This 
can be better understood by modeling the communication explicitly. The time to transfer data between 
two processes is S + RL where S is the setup time, R is the transfer rate (in seconds/byte) and L is the 
length of the message. Typical numbers for these values (taken from a Sun 4/20 using TCP/IP on an 
IEEE CSMA/CD) yield, S =16 msec and R is (10Mb/sec)_l. The additional message length will impact 
the message transfer time when RL > S. For this model system, L > 104 and for a 10 byte message, 
(B = 10), nm > 1000.

The derived executable assertions can be implemented in linear time on the length of schedule and 
the size of SG. However, as time progresses, schedules from the lock managers will continue to grow. 
However, it is clear that at some point, old schedule information is no longer necessary. Thus, the GAV 
set for schedule! can be reduced by deleting this old information.
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4.B. Parallel Sorting
Parallel implementation of sorting is common in algorithmic study. Of particular interest is the 

bitonic sort on the hypercube [Quin87] due to its nice recursive definition. Bitonic sort’s fundamental da
ta structure is a bitonic sequence which consists of a subsequence of ascending elements followed by a 
subsequence of descending elements, or vice-versa. The basic operation is to “sort” bitonic sequences, in 
parallel, into ascending or descending sequences, which, when concatenated together, form a longer new 
bitonic sequence. This procedure is recursively performed until only an ascending or descending se- 
quence of elements remains. The parallel time complexity of bitonic sort is 0(log2N) where N is the 
number of processors (data elements).

The naturally expected result at termination of a sorted permutation of the original input is shown 
by verification (Appendix B.2). Intuitively, we must show, that at each level of recursion, (1) bitonic 
sequences are maintained, (2) each sorted sequence is a permutation of the previous bitonic sequences. 
Two global auxiliary variables; ia, and p^ relate the current and past values of a,, the local copy of pro
cessor l’s value to be sorted. In the loop formulation (Appendix B.2), two loop invariants result from the 
verification; the outer loop shows properties (1) and (2) directly while the inner loop assertion supports 
the loop’s contribution to the outer loop.

In conversion from the verification proof in GAA to HAA, gy for any two processors k and 1 is

gki = {{iam}, {pam} I 0 < m < N -  1}

We now turn our attention to observations on efficiency of the transformed program. We can apply 
heuristics to reduce the overhead penalty of the error-detecting algorithm.

Even after deleting all assertions that use only local variables, we are left with redundant assertions. 
Consider the inner and outer loop invariants; each of these use global auxiliary variables. If the inner 
assertion fails, then the outer assertion also fails. Thus, for efficiency, we can delete the inner assertion 
from the transformed program.

The auxiliary variable pai does not need to be communicated directly within the augmented commu
nication. At the end of each iteration of the outer loop, we may simply assign paj <— iaj since the current 
bitonic sequence values become the old bitonic sequence values in the next iteration. Thus, we can mod
ify g, as follows

gki =  { { iam)> I 0  < m <  N  -  1}

For consistency, since we have a regular, point-to-point interconnection graph, the natural communi
cation patterns define when consistency can be tested. Formally,

o s i a j e g i d  * i a , e g ml; leA y

where Ay (definition given in Appendix B.2) reflects the natural flow of augmented communications that 
processor 1 receives at time i, j where i and j are values of the outer and inner loop indices, respectively. It 
is shown in [LuSM92b] that for each processor k in A]0 and i > 0 that processor 1 receives two values of 
ak in stage i that were computed in stage i -  1.

The parallel bitonic sort algorithm of this section, has a time and communication complexity of 
0( log2 N). Implementing the assertions from HAA with the efficiency improvements described above



- 13 -

yields an error-detecting algorithm time complexity of O(N) computation and 0(log2 N + Nlog2 N) com
munication tolerant of one faulty processor [McNi92]. Implementation shows, that as system size 
increases, the performance penalty lessens.

4.C. Branch and Bound
Our last example exhibits two important properties, consistency through natural redundancy, and 

loose synchronization. In a parallel implementation of branch and bound, N individual processes search 
portions of a state space tree for the lowest cost node. As the search progresses, processes propose 
improving bounds on the solution value which allows all processes to prune their search space.

Verification in GAA of a parallel branch and bound requires showing the postcondition, Q: the 
entire search space is eventually considered, either by direct exploration, or by pruning and that the low
est cost solution (GAV solutionj in process i), out of this exploration, is the one reported. Details are 
given in Appendix B.3. The conversion to the HAA proof system is straightforward. Transformation to 
an error-detecting algorithm, however, exhibits some interesting phenomena.

Explicit consistency, in the sense of Section III.B, can be implemented. However, Branch and 
Bound algorithms are Naturally Redundant [LaMG91]. Specifically, this implies the effects of a faulty 
process proposing an erroneous bound will be naturally corrected by the algorithm at some later time of 
the computation; if the erroneous bound is larger than it should be, not as many solutions will be pruned 
by other processors, but in the end, the postcondition will still be met. Appendix B.3 gives a formal proof 
and further analysis. Natural redundancy takes place of consistency in most cases; however, since the 
processes involved in the solution are not tightly synchronized, the absence of a message cannot be 
detected; other techniques are needed.

Since message absence cannot be detected, it is possible, in the faulty environment, that the optimal 
solution may be pruned off or that the subtree that the optimal solution is in is not communicated properly 
due to a faulty processor withholding information. However, since absence of information does not con
stitute an error in executable assertions derived from HAA, the error-detecting program’s executable 
assertion corresponding to the postassertion Q in HAA, is satisfied, but the program has not actually met 
the postcondition. A brute-force way of testing the postcondition is for each process to engage in N dis
tributed agreements [LaSP82] on solution; by broadcasting its perception of the best solution to all other 
processes. However, this is more then we need. Instead a series of validation rounds are used to check 
the validity of the solution.

Each validation round consists of verifying Q by redistributing the initial states to different workers 
and restricting the workers to communicate within disjoint sets of workers. If the validation round finds a 
discrepancy in solution;, then there is an error. In terms of efficiency, since a solution has already been 
found that has a bound lower than most paths in the tree, many branches can be immediately pruned. To 
counter the effects of more than one faulty processor, additional validation rounds are necessary. For full 
details of an error-tolerant algorithm using validation rounds see [SuMc91].

With a low cost as an upper bound, the verification stage only requires very little time to verify the 
solution. If the bound is quite large, the performance for the verification stage could be bad, but no worse 
than the initial search round. Experimental results [SuMc91] show that the overhead of the validation 
round is less than 50 percent of the time to compute the original solution.
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V. ASSESSMENT of the METHOD
In the beginning of this paper we argued that previous work on generation and selection of actual 

executable assertions for concurrent programs lacks a sound, theoretical basis. We have developed a fun
damental technique which translates a concurrent verification proof outline into a error-detecting concur
rent program on a sound, theoretical basis. In this section we assess the method as a basis for building 
fault-tolerant concurrent programs.
5.A. Translator

To prove the concept of formal methods for application-oriented fault tolerance requires a large 
number of programs to be treated. Currently to lest an application within the fault tolerance framework 
requires execution of the translation algorithm by hand. The automated translation from a proof outline in 
the GAA proof system specified using CSP to the HAA proof system is straightforward.

There are two issues involved in the generation of consistency executable assertions from the HAA 
proof system: the determination of the o operator for the abstract data type is not defined the the abstract 
data type itself. For example, in the database application the o operator for the sequence was defined as a 
prefix operation. In other applications, the o operator is defined as an equivalence operation.

The insertion of code for consistency into the error-detecting code is the job of the translator. Syn
tactically, consistency is checked after each augmented communication. Should it be the job of the trans
lator to insert code only where consistency can be checked? The answer is no. The definition of consis
tency states that "when two or more tuples are available, the consistency operator is applied." Two or 
more tuples may not be present at every augmented communication. Thus, a consistency test at these 
places is unnecessary and adds to overhead. This is a run-time issue at best, and an efficiency issue at 
worst.
5.B. Assessing Fault Coverage

How is fault coverage measured? There are several ad-hoc approaches to measuring the fault cover
age of an instrumented system based on the application. We turn to formal methods to analyze error cov
erage. Since the run-time error-detecting program created by the transformation process forms a logical 
system, it is possible to reason about this system using automated theorem proving techniques. The diffi
culty is in determining the notion of an error. Roman in [Roma87] describes an augmented CSP called 
CSPS which takes into account details of the underlying machine architecture. Errors are then simulated 
in the programming system through the nondeterministic selection of faulty paths through the system. 
Program verification can then be applied to this augmented program to show that fault tolerance proper
ties hold at run time.

5.C. Efficiency
How do we determine the minimal set of executable assertions. As we have seen with the parallel 

sort it is not necessary to use all verification proof assertions as executable assertions. We saw that that 
some assertions have the same coverage as others or ,in other words, some assertions are subsumed by 
others. We are currently developing an algorithmic way of determining which assertions are subsumed.

5.D. Liveliness
We have made use of axiomatic proof systems for CSP-like programs in our current work. We have 

been able to construct run-time error-tolerant programs. It is clear, however, that for concurrent, real
time systems, we need a general way of reasoning about eventuality, particularly to show total



- 15 -

correctness. A temporal logic-based proof system [OwLa82] provides a convenient, expressive, way of 
reasoning in time. The problem of relating temporal assertions to executable assertions, however, is not 
straightforward, as in the axiomatic techniques. The complexity of the general problem of relating tem
poral assertions to those in first order logic is disheartening. Thus, the need to explore further the notion 
of temporal proof systems.
5.E. Fault-Detection

Little of our work so far has been concerned with locating a fault when an error occurs. We have 
concentrated mainly on identifying failures while ignoring the concept of reconfiguration and recovery. 
To perform reconfiguration requires isolation of the faulty component [YaHa84]. Future research will 
approach this problem based on the formal methods paradigm outlined in Reiter’s theory of diagnosis 
from first principles [Reit87].
5.F. Reconfiguration and Recovery

It is possible that reconfiguration can be done in a local distributed manner. Indeed some prelimi
nary work has attempted application oriented reconfiguration for relaxation techniques [OsKA86] and the 
reconfiguration on rings embedded in a faulty hypercube [LiMc92]. Application oriented reconfiguration 
involves not replacing the hardware component, but remapping portions of the application to fault-free 
components.

APPENDIX A. PROOFS OF SOUNDNESS AND COMPLETNESS
A.1. Non-Interference. Non-interference of a set of parallel processes is defined such that for each 
assertion P in a process p  it must be shown that P is invariant over any parallel execution. A command S 
is parallel to an assertion P if S is contained in a process of a parallel command and assertion P is con
tained in a different process of the same parallel command. Now every command S parallel to P must sat
isfy

<PApre(S)> S <P>

and every matching communication pair S = p \!y and R = that is parallel to P, must satisfy the con
dition

(PApre(S)Apre(R))=>Py

A proof of non-interference is mechanical by comparing every assertion in every process against every 
command in every other process and against every matching communication pair.

In the HAA system, the preconditions of the matching communication pairs are derived from the 
preconditions in the GAA system and are therefore implied by them. Thus, pre(S)QAA will imply 
pre(S)nAA for an arbitrary statement S. Pqaa and Phaa will correspond to the same assertion in both the 
HAA and the GAA system.

We now need to show that for an assertion P and a statement S involving the set of GAVs in the 
GAA system, if <PGAAAPre(S)GAA> S <Pgaa> is true then the corresponding expression in HAA will 
also be true. Let’s assume that this is not true, i.e., the statement is true in GAA but not in HAA, then 
there must exist some assignment of the GAVs in HAA such that <PHAAAPre(S)HAA> S <-,Phaa>- This 
can only happen if S invalidates P.
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Lemma A .l: The proofs are interference-free ifS is not a communication command.
Proof: Assume they are not interference-free. Then there exists some S in such that S makes some 
assignment x: = y which, at some future time, is communicated.
Case 1: S in pj does not involve variables in Gj. Therefore, since S is local to pj, it cannot affect the truth 
or falsity of assertion PHaa in process py

Case 2: S is an assignment to the GAVs. Eventually, the change x:= y, where xeGj, that was performed 
by S will be communicated to pj. If this invalidates PHaa then this is equivalent to 
<I>GAAAPre(S)GAA> S <->Pg aa> « which by non-interference in GAA cannot happen.
Cases 1 and 2 show that the proofs cannot interfere if S is not a communication command. □

Lemma A.2: The proofs are interference-free if Sis a communication command and R and S form a 
matching communication pair.
Proof: It needs to be shown that if

(PGAAAPrc(S)GAAAPie(R)GAA)^Py GAA

is true then also

(PHAAApre(S)HAAAPre(R)HAA)=>Py HAA

must be true. We know that the preconditions of GAA imply the preconditions of HAA. Also, we know 
that PGaa and Phaa correspond to the precondition to the same communication. After the communica
tion and the variable assignment x: = y, Py Gaa still corresponds to Py HAA since the same assignment of 
variables was performed in both systems and since by case 2 of Lemma A.l, any communication of 
GAVs will not invalidate any assertions in HAA. Now, if the GAA system is interference-free but the 
HAA system is not, then this will lead to a contradiction. □

Lemmas A. 1 and A.2 showed that the HAA system is interference-free if the GAA system is inter
ference-free. This is summarized in Theorem A.l.

Theorem A .l: Non-interference of the GAA proof system implies non-interference of the HAA proof 
system.

Proof: In the GAA proof system every program that can be verified using this approach requires non
interference of the GAVs. Thus, every program that can be verified using the GAA system is composed 
of interference-free proofs, and from Lemmas A.l and A.2 we can immediately conclude the non
interference of the HAA proof system. □

A.2. Satisfaction Proof. For the satisfaction proof we again need to consider matching communica
tion pairs of the form

S = <?!>;?!! y<Qi> and R = <P2>/?2? X<Q2>

When processes p\ and p2 communicate, an assignment x: = y is performed. Therefore, (QiaQ2) is true 
after the communication if and only if (Qi aQ2)* is true before the communication takes place. Before the 
communication, however, both preconditions of the matching communication pair must also be true, or 
else no communication will take place. Thus, we can see that (PjAP2) must be true. The rule of
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satisfaction now requires that every matching communication pair must satisfy

(PiaP2) => (QiAQ2)y

For the HAA system we perform the satisfaction proof only after the update of the GAVs by <j> (after the 
communication), whereas in the GAA system the GAVs will always be consistent and we do not have to 
wait for their update.

Theorem A.2: The satisfaction proof of GAA implies the satisfaction proof of HAA.
Proof: Since the assertions in the HAA system are derived from the assertions in the GAA system, the 
preconditions in GAA for the matching communication pairs imply the preconditions in HAA. This is 
denoted by

(Pi;gaaaP2igaa) => (Pi,haaaP2,haa)

Both proof systems have the same matching communication pairs and since updates of the global vari
ables are performed in the HAA system after each communication and due to Theorem A .l’s statement of 
non-interference, the postconditions after the GAV update in the HAA system correspond to the ones in 
the GAA system. Therefore the following statement must be true as well:

(Ql,GAAAQ2,GAA)y =* (Ql,HAAAQ2,HAA)y

The GAVs in the HAA system may be inconsistent in the different parallel processes but, again, due to 
Theorem A.l, this is not of concern. We now need to show

(P i ,HAAa P2,HAa ) =* (Ql,HAAAQ2,HAA)y

to prove that HAA can be satisfied if GAA is satisfied.

Let us assume now that (Qi,HAAAQ2,HAA)y is false but the preconditions (Pi ,haaaP2,haa) are true. 
From the expressions above we know that if the preconditions in the GAA proof system are satisfied, then 
the preconditions in the HAA system must also be satisfied since they are derived from the GAA system. 
Satisfaction of the preconditions and successful communication in the GAA system imply that the post
conditions in the GAA system are also satisfied. This, however, implies that (Qi,HAAAQ2,HAA)y must also 
be true, according to the statement above. Now, if the postconditions in the HAA system are not true, 
which is the assumption stated above, this will lead to a contradiction. Thus, the satisfaction proof of 
GAA implies the satisfaction of HAA. □

A.3. Soundness. We need to show that soundness is preserved in the conversion from one formal sys
tem into another. This means that we can show that with the rules given in a proof system, all expressions 
that can be derived by it are logically implied.

The following theorem shows how the conversion from GAA to HAA preserves soundness. 

Theorem A.3: If the GAA proof system is sound then the HAA proof system is also sound.
Proof: It can be seen that in the conversion described in this paper (from GAA to HAA) the inference 
rules are not changed and the only changes made affect the communication between processes and the 
updates of the GAVs. This is shown by the satisfaction proof which implies that since the expressions in 
the GAA system could be shown to be satisfiable that now the expressions in HAA are also satisfiable. 
Thus, all statements that could be derived in the GAA system can now be derived in the HAA system. 
Since we assume GAA to be sound, only statements that are logically implied could be derived. The
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same property must now also hold for HAA. □
A. 4. Completeness. It is not always possible to show that a formal system is complete, i.e., that every 
statement that is logically implied can be derived by this system. If we assume that the GAA system is 
complete (in a restricted sense) [Owic75], we would like to show that the transformation to HAA is also 
complete.
Theorem A.4: If the GAA proof system is complete (in a restricted sense) then the HAA proof system 
is also complete (in a restricted sense).
Proof: The set of assertions in the GAA system are “copied” in the conversion to the HAA system. 
Each assertion that was originally present in a proof of the GAA proof system will have an equivalent 
assertion in the HAA system. This can be described by a one-to-one function. Now, if a new assertion is 
introduced in the HAA system, then it must be logically implied by the given statements. This means that 
a corresponding assertion can be introduced in the GAA system. This function is the identity on the set of 
assertions in the HAA proof, which is also a GAA proof. Thus, any assertion in GAA will also be in 
HAA, and any assertion introduced in the HAA system is an assertion in the GAA system. Therefore, 
from Theorems A.l and A.2, if the GAA system is complete, so must be the HAA system. □

A formal system should be sound and complete. The formal system introduced by [OwGr76] is 
shown to be complete in a restricted sense in [Owic75]. The GAA system that is used here as a transfor
mation basis for the HAA system is related to the system introduced by [OwGr76], However, soundness 
or completeness are not formally shown. Our results are no stronger than the existing results on the 
soundness and completeness of the GAA system.

APPENDIX B. VERIFICATION PROOF OUTLINES for EXAMPLES
B. 1. Verification and Translation Of a Lock Manager Process

The highlights of the verification proof in the GAA system are presented here. The following auxil
iary variables are used in the verification proof: schedule) and SG. schedule) denotes the schedule of 
operations as ordered by the lock manager on process i. SG denotes the partial order between transac
tions.

A transaction Tk( finishes before a transaction Tst, if all the operations in Ty occur before all the 
operations in Tsl. We can define a relation "<" on the set of transactions as the smallest relation satisfying 
the following condition: If Tst requests a lock on entity e that has been previously locked by Tkl then Tkl < 
Ts(. Since, Tst must wait for TM to release the lock and since, locks are not released until the termination 
of the transaction, then it follows that Ty finishes all its operations before Tst finishes all its operations.

It does not make sense for Tw to finish before Ts, and for Tst to finish before Tk!. Therefore, "<" is 
antisymmetric. If Tkl finishes before Tst and Tst finishes before Tyz then Tk] finishes before Tyz. There
fore, "<" is transitive. Also, since, it does not make sense to say that a transaction finishes before itself. 
This implies that the relation "<" is irreflexive. Since, "<" is transitive, antisymmetric and irreflexive then 
"<" is an irreflexive partial order. If two transactions do not operate on common entities then it is impos
sible to say which transaction completes before the other. Therefore, "<" is not a total order.

The partial order is denoted by a graph represented by SG = (T, E), where T is the set of transac
tions, and the set E represent the arcs between the transactions. An arc between Tk] and Tst implies Ty < 
Tst. Since, SG is a graphical representation of a partial order, then SG does not contain cycles, i.e. it is
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acyclic. SG represents a partial order of transaction execution. This order of transaction execution repre
sents a dependency among transactions that indicates which transactions must be completed before oth
ers. The partial order represented by SG can be shown to be equivalent to the partial order defined in 
[EGLT76], which shows that if each set of transactions is well-formed, two-phase, then any legal sched
ule for T is consistent and that the partial order can be extended to a total order that defines a serial sched
ule that is equivalent to the run-time schedule.

The following functions on schedule) are used in the verification proof:

Last_Op)(e, j): This represents the jth to the last operation on entity e.
Last_TranS)(e, j): This represents the jth to the last transaction to operate on entity e.

The precondition for each lock manager process running on processor i assumes that no scheduling 
of any of the transactions has taken place. At termination of the lock manager on processor i, we want 
SG to denote an irreflexive partial order, i.e. SG must be acyclic and that the schedule produced by a lock 
manager on process i is legal.

The best way of ensuring that SG is acyclic at the end of termination of the lock managers is to 
ensure that the following two conditions are invariantly true throughout program execution: SG is acyclic 
and a scheduled operation for a transaction does not violate the conditions of a legal schedule. This can 
be formally represented as follows:

<SG is acyclio (1)

<-i3e, j(Last_opi(e, j) = lock a  Last_op)(e, j + 1) = lock)> (2)

For an arc denoted by (Ty.T^) to be a member of E, it must be the case that all the operations of Tu are 
completed before all the operations of Tst. This is represented as follows:

<(Tk),Tst)eE i<=>3 e,j, i (Last_op)(e, j) = lock a  Last_op)(e, j + 1) = unlock a  

Last_tran)(e,j) -  Tst a  Last_lran(e,j + 1) = Ty)>

It is also necessary to ensure that if an entity is unlocked then the last scheduled operation for it is an 
unlock operation. This is represented as follows:

<lue is unlocked —> Last_op)(e, 0) = unlock> (4)

These four assertions form the invariant, I. The proof that the truth of I is preserved is found in 
[LuSM92]. Executable assertions are derived from the four assertions used to form the invariant I. These 
executable assertions are embedded into the transaction managers.

The details of the verification proof for a transaction manager process on processor i are not 
included in this paper. It turns out that it is similar to that of the lock manager and that the executable 
assertions derived are similar to that of the lock mananger.
B.2. Verification Details of Bitonic Sort

This section derives a error detecting bitonic sort algorithm. The transformation from a bitonic sort 
algorithm to a error detecting bitonic sort algorithm is based on the technique of transforming a verifica
tion proof outline of an algorithm to a error detecting algorithm. However, now, run-time efficiency is 
considered. This consideration of run-time efficiency has resulted in a error detecting algorithm that does 
not use all the assertions.
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The target multicomputer interconnection topology considered in this paper is the popular hyper
cube topology. As mentioned above, these systems can grow to over 1000 processors. In general, the 
topology of an n-dimensional hypercube is a graph G(P, E) with N = 2n vertices called nodes labeled 
P0, P j, P2, . . . ,  PN_i. An edge eye E connects Pj and Pj if the binary representations of i and j differ in 
exactly 1 bit. If we let this bit position be k, then Pj = Pj®2k- Thus, in an n-dimensional hypercube, each 
processor connects to n neighboring processors. Connections between the host and nodes are mainly used 
for program/data downloading and result uploading and are not represented in G. The algorithm used in 
this paper as a parallel sorting algorithm was introduced by Batcher in 1968[Batc68]. This bitonic sort 
algorithm was introduced as a parallel sorting algorithm that can take advantage of interconnection 
topologies such as the perfect shuffle and hypercube. There exists a bitonic sort algorithm that maps 
directly to a hypercube topology.

The postassertion {Q} of any sorting is defined in the following:

Definition B.2.1: Given an input list I = (I,), i=0,...,N-l a sorting procedure S finds a permutation n = ( n) such that:

Iffj -  I>ri+1»i = 0, . . . ,  N -  2 

or

I»i -  I«j+1, i = 0, . . . ,  N -  2

The general idea of a bitonic sort is to build up longer bitonic sequences which eventually lead to a 
sorted sequence.

Definition B.2.2 : A bitonic sequence is a sequence of elements Oq, Oj , • ■ *, On. , such that
1. There exists 

Oi > Oi+1 >
a subscript i, 

> 0 N_!
0 < i < N -  1 such that VIdVI00

< o M and

or
2. There exists 

O i <O i+i < • •■
a subscript i, 

< On_j

0 < i < N - 1 such that 0 0 IV p IV • > o H and

The fundamental operation in a bitonic sort is the compare-exchange operation, either min(x,y) or 
max(x,y).

Lemma B.2.1: [Batc68] Given a bitonic sequence Iq < Ii < • • • < In/2- i and In/2 -  In/2+i In_i ,
each of the subsequences formed by the compare-exchange steps:

min(Io, In/2),min(Ii>In/2+i)> ' "  > m‘n (In/2- i>In- i)

and

max (I0, IN/2), max (I,, IN/2+i), • • •, max (IN/2_i, IN_i)

is bitonic with the property that Oj < Oj for all \ = 0,1N/2 -  1 and j = N/2, N/2 + 1, . . . ,  N -  1
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For this presentation, for simplicity, we assume that N = 2k for some k and therefore the initial mid
point is N/2. Since each compare-exchange involves only a comparison between elements whose sub
scripts differ on only one bit and the number of elements is always 2k, if we have one element per proces
sor, then the bitonic sort can be easily implemented on a hypercube of dimension n = log2 N [Quin87]. 
As a notational convenience, we define the following:

Definition B.2.3 The home subcube SCy of dimension i of a processor Pj is the subcube of size 2l that 
begins with processor Pk, k = j-(jm o d 2 ') and includes all processors through P[, 
1 = j -  (j mod 21) + 2'  -  1. Let SCy denote the index k and SCy denote the index 1.

The following definition of X reflects the communication patterns that naturally exist in the bitonic
sort.

Definition B.2.4: x\y where i > 0, as follows:

If 1 mod 2fi+1 < 2’ then

and if 1 mod 2*+1 > 2̂  then

4  = {1,1 + 2*}

4  = 4 J+i ^  ^j+i
j = i 

0 < j < i

U |j  =  { l , l - 2J} j =  i

A j  =  ^'j+i ^  ^lj+i 0 <  j <  i

The Bitonic sort algorithm, instrumented with the assertions necessary for verification, is shown in 
Figure B.l for each node node. Of particular interest are assertions Loopj which asserts that at each exe
cution of the outer iteration, a bitonic sequence in the subcube of dimension SCi no(je is made.
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Procedure Bitonic Sort;
i anode =  a > 
anode = a *
P anode =  a» 
for i:=0 to n-1 do
< Loopj > (assignment, consequence)
Panode =  a*> 

anode — a »
{for j:=i downto 0 do
< Loopj a Loopj a  anode = anode > (assignment, consequence)

{d:=2j;
< Loopj a  a,lode = anode a d = 2J > (assignment) 
if (node mod (2d)<d)

< Loop- a a'node = anode a d = 2J > (consequence)
{read into data from node + d;

< Loopj a anode = anode a d = 2J a data = anode+d > (communication)
If (node mod 2i+2 < 2i+l)

< Loopj a ano(jc = anodo a (1 = 2* a data = alludB+j a  node mod 2I+2 < 2I+I > (alternative)
{b := max(data,a);a := min(data,a);)

< Loopj a d = 2J a data = a[10de+<, a node mod 21+2 < 2,+i a b = max(a'lode4d,a|1ode) a

a = min(a'lode+d, ajlode) a Vlscs ^ sce [a < max(aj,a|+d)] > (assignment,consequence)
j,iiode j,iiode

else
< Loopj a allode = allode a d = 2] a  data = a ,,^ ^  a -<node mod 2,+2 < 2,+1) > (alternative)

{b := min(data,a);a := max(data,a);}
< Loopj A d = 2>A data = a'nojc+<i a --(node mod 21+2 < 2I+I) a b = min(ajl0(,e+<|, a'no<li.) a

a = max (â 1(xle+d, a'node) a v lsc^nodesisscJEn(K)e ta 5 01111 (a! > ai+d)l > (assignment, consequence) 
write from b to node+d;}

else /* Send to neighbor - we are inactive this iteration */
/* Proof outline is symmetrical */

{write from a to node-d;read into a from node-d;}
anode =  a > 

anode =  anode>
} /* End for j */

} /* End for i *1

Figure B.l: Bitonic Sort Instrumented with Verification Assertions

Loopj states that the values of the local variables a after each loop execution produces a bitonic sub
sequence in each subcube of size 21+1. Loopj also states that the values of the local variables a after each 
loop execution are a permutation of the previous values of the local variables a. Formally, Loopj is the 
following:

i * 0 -» (node mod 2I+1 < 2' —» asrs < • • • < asrE a node mod 2I+1 > 2* 1 -» a<-rs > • • • > asrB )
°H node a Hnode a M.node a H n o d e'

anode =  *al A ^SC ?n̂ e< l<S C ^ ea node =  P a l

A
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and Loopj is the following:

Vni|<m<;_i [node mod 2 < 2 —̂ Vkê s <t<scG Vlĉ s <i<scG ^ 3i] a
JSIT1SI 1 L ^ m + l 1nodcS K S ^m +l,node ^ (“ m+lln0de+2ni+lSIS::>^m +l>iK>d&+2'n+l K 1 J

node mod 2 ^ 2 —̂ N/keps <k<sr'̂  \/lcps <i<sp  ̂ t̂ k — 3.]])] a
^^m +l ,node“ ^—̂ '"'in+l .node ^ m +l,nod^2»i+lS 1S  m +l.n o d ^ + l K 1 J / J

i = j -> (node mod 21+2 < 21+1 -» a|Cl < * * • < a|c. _ a node mod 21+2 > 21+1 -» a|c. > • • • > afc ) aJ  x ^M.node ^M.node ‘̂ '-i.node C5'-i,node

node mod 21+2 < 2I+I —» ('̂ lscJ;i,cilisi<s(:[;n[xjJ ai -  ait 11 v 31sĉ nodea<scfI10(l, ^ csĉ I)0<I,sk<i[ak -  ak+i 1 a  Vkiak<SCE_i-[ak > ak+i]) a

node mod 21+2 > 2I+1 —> (Vlscj^skScP**[ai ^ ai+i] v *̂sc?noifc<i<scPnode' l̂csc?nlxte£k<i[ak -  ak+il A Vk1<k<SCE^c[ak 5 ak+i]) a

31o£i<Nanodo = iai a  31scsn(Kli.S|£sC|;wk.anodc = pai

and the assertion Loopj is constructed by replacing in the assertion Loopj each a, with aj.

anode» anode an^ ianode where 0 < node < N -  1 are the auxiliary variables used in the proof outline.
The postcondition is that the output list is a permutation of the input list and that it is sorted. To decrease 
complexity the precondition is assumed to include that n > 1. In order to make use of this simplification, 
it is assumed that no faulty behavior occurs in the execution of the first iteration of the outer loop. This 
helps in eliminating tedious but trivial cases.

It is assumed for the sake of simplicity that we have loop synchronization. This simplifies proofs of 
non-interference. As part of inner loop synchronization, assign anode to anodc. This is done before any 
check for loop invariants. Loop invariants are checked at beginning of loops, but loop indices are 
changed at end. This implies that the loop indices are changed at the end of a loop iteration before invari
ants are checked.

B.3. Branch and Bound Verification
The objective of the optimization is to find a minimal length path from the initial configuration to a 

state that is a solution. For the N-puzzle problem, the following optimization function is used:

Definition B.3.1 : The optimization function, f, determines the cost for a particular state, Sj, at level k.

f(Sj) = md] + k

where md, is the manhattan distance(i,e. sum of distances that each tile must be moved for the tiles to be 
in the appropriate places) of the configuration denoted by Sj.

When f is a monotone nondecreasing function [KoSt74, SuMc91], if the branch and bound algorithm 
finds the minimal cost node as defined by the minimum cost function, which satisfies certain properties, 
then the minimal cost node is also an optimal node. The manhattan distance decreases to zero resulting in 
k for some f(Sj) evaluated at level k. This value corresponds to the number of moves it took to solve the 
puzzle. The nondecreasing nature of the function signifies that any path being considered with a higher 
bound will take at least that many moves to solve the puzzle. Since a solution has already been found 
which can solve the puzzle in fewer moves, that path will not lead to a better solution. However, the 
remaining paths with lower bounds must continue expanding, generating new states until it reaches a 
solution or until it exceeds the current upper bound. When all the nodes of the tree have been explored,
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the solution having the lowest bound is the one with the minimum number of moves. The parallel algo
rithm described in this paper is based on this concept.

Before proceeding with the highlights of the verfication proof and the translation of a branch and 
bound algorithm, we need to make a minor extension to the GAA (HAA) proof system. The GAA and 
HAA proof systems are designed for synchronous programming primitives. Our work uses an extension 
of work discussed in [ScSc84]. The work of [ScSc84] describes how to extend the notion of a “satisfac
tion proof” and “non-interference proof” for asynchronous message-passing primitives. The extension 
is based on introducing for each pair of processors i and j, two auxiliary variables cry, py, where cry is the 
set of all messages sent from process i to process j and py is the set of all messages j actually receives 
from i. This extension involves assuming that that actual sending and receipt of a message implies that 
cry and py are immediately updated. It is also assumed that pyccry is invariantly true throughout program 
execution.
The following auxiliary variables are used:
Sj: This is the set of all nodes in the tree that represent the state space 
Aj: This is the subset of Sj which contains the nodes that are solution nodes.

S : This is the set of nodes that have been examined by the algorithm, either directly or by pruning.

A : This is the set of solution nodes that have been examined by the algorithm, either directly or by prun
ing.

S: This is the set of nodes that have not been examined by the algorithm.
A: This is the set of solution nodes that have not been examined by the algorithm.

Sj: This is the set of nodes to be examined by process i.
SBy: This is the set of solutions sent from i to j

RBy: This is the set of solutions received by i from j.

solution: This is the value of scurrent at the termination of worker i.
Each node in the tree is referred to as a state, si( of the system configuration where i is a unique inte

ger. We will assume that so denotes the state corresponding to the root node or the initial configuration. 
The state Sj will be represented by the path taken from the initial configuration, sq to the node represented 
by Sj. A path is the sequence of moves from Sq to the node Sj. If Sj is a reachable configuration from Sj 
then Sj and Sj are on the same path in the search tree. If SjS Aj then Sj is a solution or final configuration.

We need to assert a precondition, <P>, on the program which asserts that there is a solution reach
able from the initial configuration s0. In other words, P is as follows:

< Aj * 0  >

The parallel algorithm involves dividing the work in terms of subtrees and has many processors 
working on the problem simultaneously. A task refers to transforming some Sj to Sj by a legal move of 
type, mk, where mkeM. We use as a model algorithm that of [SuMc91]. The algorithm requires only 
workers to search the solution space. The initial task, s0, is assigned a designated worker to work on. As 
time passes, more tasks are created. Each worker retains one task for himself and redistributes the rest to 
other idle workers. Formally, this corresponds to partitioning the auxiliary variable Sj into the disjoint
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sets S0, S j, • • •, SN_i, which also satisfies the following immediately after initial board distribution:

< S 0U S 1U - ' U S N. 1 =S:>(1)

When a worker has completed his task, he notifies the other workers that he is available to accept 
tasks; otherwise, he continues working on the original tasks distributed to him. Since task migration does 
not change the set of nodes to be examined as a whole, migration only changes the set of nodes to be 
examined by the migrating and receiving worker processes. Because of the asynchronous nature of the 
algorithm, it is possible for process i to send a task to process j, but j is not ready to immediately receive 
the task. Therefore, it is necessary to include the following set in the assertion (1)

{s I sg <7jj — py a s is a task, where 0 < i , j < N - l , i * j }

From the satisfaction proof that must be done at each task migration, we know that < slaske Sj >and 
OjiCSi is true in any migrating process. Since P ^ a]\ is invariantly true, we see that < S^Sj >.

We have asserted that each worker process i examines those nodes that are part of the state space 
when it receives a task. We also need to assert that we don’t lose portions of the search space by pruning 
and that the algorithm only examines those nodes that are in the state space. This leads to the following 
invariant:

< S U  S = Si a A U  A = Aj > (2)

The updating is done by determining all the set of nodes associated with the pruned subtree by find
ing all the reachable nodes

T0 = {sj I Sj is a reachable configuration of Sj}.

from the root node Sj of the subtree to be pruned off and determining all the solution nodes in the pruned 
subtree. The solution nodes are deleted from A and added to A . The state space is updated by 
Sj = Sj -  T0. It is, therefore, easy to see that S|CSt is still true.

The only other communication that occurs among the workers is when a solution, s, has been found. 
This solution is only one of many in the solution space, AI( and may not be the best solution, but it allows 
some pruning to be done such that the number of tasks can be reduced. The worker who discovers the 
solution broadcasts to the other workers allowing them to update their local bounds. The algorithm termi
nates when all tasks have either completed or been discarded. The current solution, scurrent which has the 
lowest bound then contains the optimal moves for the puzzle.

The above discussion leads us to the precondition, Prej to each worker process i, which states that 
each worker processes initially have no tasks to examine and no communication has taken place. This is 
represented by

< Sj = 0  a SBy = 0  a RBjj = 0  for all j, 0 < j < N -  1, j * i >

The postcondition, Posh of the worker process i, is that the local variable scurrent has the following prop
erty:

< scurrent is the optimal cost solution >

For each terminating component process labelled node, snode is the lowest cost solution in the search 
tree. At the termination of the program, we want each processor to have the same lowest bound.
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Therefore, the postcondition Q is represented as follows:

< solutiono = solutionj = • • • = solution^ a  

solution! is the optimal cost solution >

In the program, in each process i, scurrent is the solution that is known by process i to have the lowest 
bound. scurrem is changed as more information about other solutions becomes known from other pro
cesses. Therefore, the following assertion is invariantly true:

< Scurrent = min (a t aG Rit where Rj = U  RBy) > (3)

We would like to also ensure that the set of solutions received by each process by the termination of 
the program is equivalent. The following assertions aid in this. It must be invariantly true except when a 
solution is being broadcast(only because the auxiliary variable update is done after the broadcast).

< SBy = Rji hJ {x I x g  ay — />jj a  x is a solution} > (4)

< SBjo = ■ ■ • = SBiN_i> (5)

The assertion stated in (5) states that the solutions that are sent from process i to process j are the same 
received by process j from process i except for those solutions that are in transit. The assertion stated in 
(6) is true because process i sends a solution to all processes.

Since, A is the set of solution nodes known not to be a lower bound, then for each solution node in 
A there is at least one solution node in the set of broadcast solutions that is of lesser cost. Mathemati
cally, this can be described as follows:

< For all xg A , there is an i and y such that yG Rj and
f(y) < f(x) > ( )

The formal verification now goes onto formulate loop invariants and that termination shows the 
postcondition. Since the details of this are unimportant in the transformation process, we omit this dis
cussion here.

We will now discuss the concept of a naturally redundant algorithm and then it will be seen why the 
redundancy implies consistency.

A naturally redundant algorithm [LaMG91] running on a processor architecture P has at least the 
potential to restore the correct value of any single erroneous component in its output. In the parallel exe
cution of many applications, processors communicate their intermediate calculation values to other pro
cessors as the computation proceeds. In such cases, the erroneous intermediate calculations of a faulty 
processor can corrupt subsequent computations of other processors. It is desirable that the correct inter
mediate calculations could be recovered before they are communicated to other processors. This moti
vates the definition of algorithms that can be divided in phases that are themselves naturally redundant

An algorithm may be be loosely correct [LaMG91] if the value of a component of the output of a 
phase is not equal to the value calculated by the algorithm, but its utilization in subsequent calculations 
will still lead to the expected results (those that would be achieved if only strictly correct values were 
used).

It is now shown that the N Puzzle algorithm is phase-wise naturally redundant in the loose sense 
with respect to the broadcast of the solutions i.e. the broadcasted solutions are the output of each phase,
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where each phase is defined as being between broadcasted solutions. This implies that if a solution is 
incorrectly broadcast in state i of the program execution, then the program execution will correct itself by 
a later state j.

Theorem B.3.1: The N Puzzle algorithm of this section annotated with the the executable assertions 
developed in this paper is a phase-wise naturally redundant algorithm in a loose sense.

To show that the algorithm is a phase-wise naturally redundant algorithm in a loose sense requires 
showing that that if a solution is incorrectly broadcast its utilization in subsequent calculations will still 
lead to the expected results. There are several cases to consider.
Case 1: A value of scurrent (where scurrent is a broadcast solution) is received by worker A that is higher 
than the value sent by worker B when all other workers receive correct lower values. Worker A discards 
all solutions with bounds higher than scurrent and continues expanding the rest of the subtree. As soon as 
all the workers have completed their assigned paths, each compares his own view of the optimal solution 
with those received by the other workers. The solution with the lowest cost is the optimal solution to the 
problem. Since worker A’s solution is higher than the rest, A’s solution will never be considered.

Workers
A B C D

□  □  □  o

Figure B.2: Bound received by worker a is greater than all the others.

Case 2: Now suppose the cost received by worker A is lower than all the rest. This must be a correct 
solution or it will be flagged by the progress or feasibility constraints. All other workers will continue 
working based on the best solution known to him. The effects of this scenario will only slow the process 
down as a whole, but will not cause any candidate solutions to be disregarded. The algorithm self- 
corrects itself when:

1: A new solution is broadcast whose value is less than A’s current bound. Other workers then update 
their knowledge of the current best bound as well.

2: Worker A completes his job before a better solution is found, in which case, his result will be the opti
mal solution to the problem.

Cases 1 and 2 show that if the current best perceived by one worker is correct but differs from the 
global view of the rest of the workers, then it will either self-correct itself when a new solution is broad
cast or wait until the completion of the first round to check with the others. Hence, consistency is inher
ent in the algorithm and no additional constraints are necessary at this point. □

It can also be shown that errors in the transmission of the other variables (the ones to be used for the 
executable assertion) implies that error in the transmission of a solution.
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We have shown that the error-detecting program developed in this section is naturally redundant, 
hence, there is no need for explicit consistency.

a .  Workers [ ]̂ d  Il5 C3 • • • dill

Figure B.3 a. The bound received by worker a is lower than all other workers, b. Worker a self corrects 
itself when a lower bound is discovered.

Workers ^  d ^  d 5  d j  • . . d!H

8 10 10 10 10

Figure B.4: Bound received by worker a is lower than all other workers at the completion of the first 
round.
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