162,824 research outputs found

    Application of a failure driven test profile in random testing

    Get PDF
    Random testing techniques have been extensively used in reliability assessment, as well as in debug testing. When used to assess software reliability, random testing selects test cases based on an operational profile; while in the context of debug testing, random testing often uses a uniform distribution. However, generally neither an operational profile nor a uniform distribution is chosen from the perspective of maximizing the effectiveness of failure detection. Adaptive random testing has been proposed to enhance the failure detection capability of random testing by evenly spreading test cases over the whole input domain. In this paper, we propose a new test profile, which is different from both the uniform distribution, and operational profiles. The aim of the new test profile is to maximize the effectiveness of failure detection. We integrate this new test profile with some existing adaptive random testing algorithms, and develop a family of new random testing algorithms. These new algorithms not only distribute test cases more evenly, but also have better failure detection capabilities than the corresponding original adaptive random testing algorithms. As a consequence, they perform better than the pure random testing

    Improved Software Testing for Open Architecture

    Get PDF
    Proceedings Paper (for Acquisition Research Program)Applying traditional manual US Navy testing practices to OA systems will limit many benefits of OA, such as system scalability, rapid configuration changes, and effective component reuse. Pairing profile-driven automated software testing with test reduction techniques should enable these benefits and keep resource requirements at feasible levels. Test cases generated by operational profiles have been shown to be more effective than those developed by other methods, such as random or selective testing, and more resource-efficient than exhaustive approaches. This research effort increases the fidelity of the operational profile, creating an environment model referred to as a High-Fidelity Profile Model (HFPM) that can statistically describe individual software inputs. Samples from the HFPM''s probability distributions can generate operationally realistic or overly-stressful test cases for software modules under test. This process can be automated and paired with output checking functions, enabling automated effective software testing, and potentially improving reliability. Such models would be ideal for US Navy Open Architecture (OA) software because of the defined interface standards. HFPMs can enable effective testing in software reuse applications and are ideal for testing multiple releases of maturing software. This research defines the HFPM, presents a methodology to develop, validate, and apply it.Naval Postgraduate School Acquisition Research ProgramApproved for public release; distribution is unlimited

    Robust Dynamic Selection of Tested Modules in Software Testing for Maximizing Delivered Reliability

    Full text link
    Software testing is aimed to improve the delivered reliability of the users. Delivered reliability is the reliability of using the software after it is delivered to the users. Usually the software consists of many modules. Thus, the delivered reliability is dependent on the operational profile which specifies how the users will use these modules as well as the defect number remaining in each module. Therefore, a good testing policy should take the operational profile into account and dynamically select tested modules according to the current state of the software during the testing process. This paper discusses how to dynamically select tested modules in order to maximize delivered reliability by formulating the selection problem as a dynamic programming problem. As the testing process is performed only once, risk must be considered during the testing process, which is described by the tester's utility function in this paper. Besides, since usually the tester has no accurate estimate of the operational profile, by employing robust optimization technique, we analysis the selection problem in the worst case, given the uncertainty set of operational profile. By numerical examples, we show the necessity of maximizing delivered reliability directly and using robust optimization technique when the tester has no clear idea of the operational profile. Moreover, it is shown that the risk averse behavior of the tester has a major influence on the delivered reliability.Comment: 19 pages, 4 figure

    Reliability demonstration for safety-critical systems

    Get PDF
    This paper suggests a new model for reliability demonstration of safety-critical systems, based on the TRW Software Reliability Theory. The paper describes the model; the test equipment required and test strategies based on the various constraints occurring during software development. The paper also compares a new testing method, Single Risk Sequential Testing (SRST), with the standard Probability Ratio Sequential Testing method (PRST), and concludes that: • SRST provides higher chances of success than PRST • SRST takes less time to complete than PRST • SRST satisfies the consumer risk criterion, whereas PRST provides a much smaller consumer risk than the requirement

    Acceptance Criteria for Critical Software Based on Testability Estimates and Test Results

    Get PDF
    Testability is defined as the probability that a program will fail a test, conditional on the program containing some fault. In this paper, we show that statements about the testability of a program can be more simply described in terms of assumptions on the probability distribution of the failure intensity of the program. We can thus state general acceptance conditions in clear mathematical terms using Bayesian inference. We develop two scenarios, one for software for which the reliability requirements are that the software must be completely fault-free, and another for requirements stated as an upper bound on the acceptable failure probability
    • …
    corecore