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Abstract

Random testing techniques have been extensively used in reliability assessment, as well as in debug

testing. When used to assess software reliability, random testing selects test cases based on an operational

profile; while in the context of debug testing, random testing often uses a uniform distribution. However,

generally neither an operational profile nor a uniform distribution is chosen from the perspective of max-

imizing the effectiveness of failure detection. Adaptive random testing has been proposed to enhance the

failure detection capability of random testing by evenly spreading test cases over the whole input domain.

In this paper, we propose a new test profile, which is different from both the uniform distribution, and

operational profiles. The aim of the new test profile is to maximize the effectiveness of failure detection.

We integrate this new test profile with some existing adaptive random testing algorithms, and develop a

family of new random testing algorithms. These new algorithms not only distribute test cases more evenly,

but also have better failure detection capabilities than the corresponding original adaptive random testing

algorithms. As a consequence, they perform better than the pure random testing.

Key Words: Random testing, adaptive random testing, test profile, uniform distribution, operational

profile.
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Acronym1

RT Random Testing

ART Adaptive Random Testing

FSCS-ART Fixed-Sized-Candidate-Set Adaptive Random Testing

RRT Restricted Random Testing

ART-DNC Adaptive Random Testing with Dynamic Non-Uniform Candidate Distribution

pdf Probability Density Function

PDF Probability Distribution Function

Notation

E The set of all executed test cases

I The input domain

N The dimension of input domain

ND N-dimension, whereN = 1,2,3,4, · · ·

| · | The size of a set

θ The failure rate of a program

F-measure The expected number of test cases required to detect the first program failure

FRT F-measure of random testing

FART F-measure of adaptive random testing

ART F-ratio
FART

FRT

1The singular and plural of an acronym are always spelled the same.
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1. Introduction

Random testing(RT) is a standard software testing technique which simply generatestest cases

(that is, program inputs for testing) at random from the whole input domain(that is, the set of all

possible inputs for the program under test) [15], [21]. RT has been widely used for assessing soft-

ware reliability [14], [23], where test cases are often selected according to an operational profile.

The operational profile refers to a probability distribution, over the input domain, which charac-

terizes how a program is operated by end-users [20]. Anotherapplication of RT is debug testing,

which aims at detecting software failures so that program bugs can be removed, and thus software

reliability can be improved [13]. When used as a debug testing method, RT often selects test cases

based on a uniform distribution; that is, all program inputshave the same probability to be selected

as test cases, to ensure that every possible bug could be detected.

Inputs that cause the program under test to exhibit failure behaviors are known asfailure-causing

inputs. A testing method is said to detect a failure if it picks a failure-causing input as a test case.

When a testing method is capable of detecting software failures more effectively, it is more likely

that program bugs can be removed as early as possible, or thatas many bugs may be removed as

possible, and hence we may be more confident of the software’sreliability. Some researchers [21]

argued that RT is a poor debug testing method because it does not make use of any information to

guide the selection of test cases. The operational profile, which is used by RT in reliability assess-

ment, is constructed with respect to the usage frequencies of different functions in the program,

not from the perspective of how likely the inputs are failure-causing. The uniform distribution,

the most commonly used test profile for RT in debug testing, treats all possible program inputs

equally, regardless whether some inputs may have higher probabilities to be failure-causing than
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other inputs. Briefly speaking, both test profiles for RT are not failure oriented, and hence are not

expected to ensure an optimal failure detection capabilityfor RT. This lack has motivated us to

investigate whether different test profiles can enhance theeffectiveness of RT.

Several studies [1], [2], [12], [25] have independently made a common observation that failure-

causing inputs tend to cluster into contiguous regions (known asfailure regions[1]) in the input

domain. Chenet al. [7] have attempted to improve the effectiveness of RT by means of this

characteristic of failure-causing inputs. Their intuition is that, if a test caset does not reveal any

software failure, then an input that is away fromt is more likely to cause a failure thant ’s neighbors.

Based on such an intuition, they proposed a novel approach, namely adaptive random testing

(ART), which not only randomly selects, but also more evenlyspreads test cases over the input

domain. Various algorithms have been developed to implement the basic “even spread” intuition of

ART, such asfixed-sized-candidate-set ART(FSCS-ART) [7],restricted random testing(RRT) [3],

and lattice-based ART[17]. Most ART algorithms consist of two independent processes. One

process (known ascandidate generation process) randomly generates program inputs astest case

candidates, or briefly candidates. The other process (known astest case identification process)

applies some criteria to identify test cases among these candidates to ensure an even spread of

test cases across the input domain. Because ART was originally proposed as a debug testing

method, the random generation of candidates has always beenconducted according to a uniform

distribution.

In ART, the goal is to achieve an even spread of test cases, butthis was not fully realized in

previous studies. Therefore, some have attempted [5], [18]to make test cases more evenly spread.

But all of these studies were focused on the enhancement of the test case identification process,

either by developing new test case identification criteria,or by improving the existing criteria. They
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all used the uniform distribution as the test profile for the candidate generation process. However,

as mentioned before, such a uniform distribution is not chosen specifically to help improve the

effectiveness of RT. We are motivated to look at what test profile can be used to enhance the failure

detection capability of RT/ART. In this paper, we propose todevelop another test profile, which

is different from the uniform distribution, and the operational profile, for the candidate generation

process in ART. Our approach is to design a test profile for thecandidate generation process such

that the test case identification process would deliver a more even distribution of test cases, and

consequently, a likely improvement of the failure detection capability. We call such a profile as

failure driven test profile. We conduct investigations on two particular ART algorithms: FSCS-

ART [7], and RRT [3].

Section 2 introduces the background information on FSCS-ART, and RRT. Some concepts used

in this paper are also discussed in this section. In Section 3, we investigate how to select a test

profile that can be used to guide the candidate generation in FSCS-ART, and RRT, while keeping

the test case identification criteria unchanged. The resultant new algorithms are evaluated via some

simulations, whose results are also reported in this section. Section 4 concludes the paper. The

appendix contains details of some calculations.

2. Background

In this paper, for convenience of illustration, we assume that the program under test only has

numeric inputs. Applications of RT, and ART on non-numeric programs have been studied in [22],

[26], and [9], [10], [16], [19], respectively.
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2.1. Fixed-sized-candidate-set adaptive random testing

Fixed-sized-candidate-set ART (FSCS-ART) [7] makes use oftwo sets of test cases: theex-

ecuted set E= {e1,e2, · · · ,en}, which contains the executed test cases; and thecandidate set

C = {c1,c2, · · · ,ck}, which containsk randomly generated candidates. A candidatecb will be

chosen as the next test case if for allj = 1,2, · · · ,k,

n
min
i=1

dist(cb,ei) ≥
n

min
i=1

dist(c j ,ei), (1)

wheredist is the Euclidean distance between two points. The details ofthe FSCS-ART algorithm

can be found in [7]. Although the performance of FSCS-ART improves with the increase ofk, any

k > 10 will not significantly improve the effectiveness of FSCS-ART [7]. Therefore, in this paper,

we will use FSCS-ART wherek has a value of 10.

2.2. Restricted random testing

Restricted random testing(RRT) [3] creates anexclusion regionaround each element ofE. Only

the randomly generated candidates that fall outside of all excluded areas will be selected as test

cases. The exclusion zone for each element ofE is of the same sizeR·|I ||E| , whereR is defined as

the target exclusion ratio. Some simulations [3] have shown that the failure detectioncapability

of RRT improves with the increase ofR. However, a largerR means that a larger part ofI would

be excluded, and hence more computation is required to generate a test case (that is, to generate a

random input outside the exclusion regions of all executed test cases). Chenet al.[5] have proposed

a mechanism to dynamically adjustR to balance the computation time, and the performance. In

this paper, we will also adopt such an approach. In addition,we set the initial value ofR at 1, 1.7,
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3.3, and 6.4 for RRT in 1D, 2D, 3D, and 4D spaces, respectively, as suggested in [3].

2.3. Failure detection capability of adaptive random testing

The F-measure, the expected number of test cases required todetect the first software failure, has

been used for measuring the failure detection capability ofART. This paper will follow all previous

studies of ART in using the F-measure as the effectiveness metric. Readers may refer to [8] for

an explanation for why the F-measure is more appropriate than other metrics in evaluating ART.

In this paper, F-measures of RT, and ART are denoted byFRT, andFART, respectively. The ART

F-ratio, the ratio betweenFART andFRT, is used to show the improvement of ART over RT.

Generally speaking, failure-causing inputs determine twobasic features of a faulty program.

One feature is the failure rate (denoted byθ ), which refers to the ratio between the number of

failure-causing inputs, and the number of all possible inputs. Thefailure pattern, the other ba-

sic feature, refers to the failure regions together with their distribution overI . Both θ , and the

failure pattern are unknown before testing, although they are fixed after coding. Theoretically,

FRT = 1/θ when test cases are randomly selected according to uniform distribution, and with

replacement. Obviously, a theoretical analysis ofFART is extremely difficult, and thus previous

studies of ART [4], [5], [6] have estimatedFART via simulations, using the basic procedure as

follows.

For simulation studies, to simulate faulty programs,θ and the failure pattern are set first. Then,

failure regions, whose size, and shape are decided byθ , and the failure pattern, respectively, are

then randomly placed insideI . An ART algorithm is applied to continuously select test cases. If a

point inside the failure regions is picked up, it is said thata failure is detected. The number of test

cases required to detect the first failure, referred to as theF-count [8], is recorded. Such a process
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is repeated for a sufficiently large number (S) of times to ensure that the average value of F-counts

can be regarded as a reliable estimate forFART within a specified confidence level, and an accuracy

range (details of decidingS can be found in [7]). In this paper, the default values of confidence

level, and accuracy range are set as 95%, and±5%, respectively.

Previous studies [4], [6] showed that FSCS-ART, and RRT perform best when failure-causing

inputs are well clustered into one single compact region. However, their failure detection capabil-

ities deteriorate asθ becomes higher,N becomes higher, the failure region becomes less compact,

or the number of failure regions becomes larger.

2.4. Test case distribution of adaptive random testing

Because the basic intuition of ART is the even spread of test cases, some research [4], [19] has

been conducted to measure how evenly ART algorithms spread test cases from different perspec-

tives. In [19], the test case distributions of various ART algorithms were coarsely described by

some 2D spatial distribution graphs. A more precise approach for measuring test case distributions

was proposed by Chenet al. [4], where some distribution metrics were employed to measure the

evenness of test case distribution. Among these metrics, discrepancy, and dispersion are two com-

monly used measurement metrics for the equidistribution ofsample points. Discrepancy indicates

the maximal difference of points’ densities for various regions in I , while dispersion indicates the

size of the largest empty spherical region (containing no point) in I . Smaller discrepancy or smaller

dispersion implies better equidistribution of sample points.

Chenet al. [4] found that all ART algorithms under their investigationexhibit various degrees

of uneven test case distribution. For example, FSCS-ART, and RRT usually have fairly small

dispersion, but the values of their discrepancy will becomelarger whenN is higher, or|E| is
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smaller. As mentioned in Section 2.3, FSCS-ART, and RRT havepoor failure detection capabilities

for high N, or highθ cases. Such a correlation between the ART effectiveness, and the test case

distribution has motivated us to look at how to enhance the failure detection capability of ART

through the improvement of the evenness of test case distribution.

3. Adaptive Random Testing using a Non-Uniform Distribution as a Test Profile

As mentioned before, neither the uniform distribution (fordebug testing), nor the operational

profile (for reliability assessment) is designed specifically to help RT achieve an optimal failure

detection capability. ART improves the failure detection capability of RT by evenly spreading

random test cases. There are two independent processes in most ART algorithms: the candidate

generation process, which ensures the randomness of test cases; and the test case identification

process, which ensures the even spread of random test cases.All previous studies of ART were

focused on the test case identification process, while the candidate generation process always used

a uniform distribution, just like RT as a debug testing method. This study attempts to investigate

whether applying a different test profile in the candidate generation process can enhance the even

spread of test cases, aiming at improving the failure detection capability of RT/ART.

FSCS-ART, and RRT have been found to have a bias of selecting test cases from certain parts

of I [4], [19]. Such a bias (hereafter referred to astc-bias) may result in an uneven distribution

of test cases. Intuitively speaking, if the distribution ofcandidates has a “reverse” effect to the

distribution of test cases in FSCS-ART, and RRT, the tc-biasmay be offset, and hence test case

distributions may become more even. However, neither the spatial distribution graphs in [19] nor

the distribution metrics in [4] have given a precise measurement for the tc-bias. In this paper, we

employ a new method to quantitatively describe the tc-bias of an ART algorithm.
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3.1. Describing the tc-bias of an adaptive random testing algorithm

If points are equidistributed, each coordinate of them willbe equidistributed. Hence, if the

projections of points in any dimension are non-equidistributed, we can say that these points are not

equidistributed. Therefore, if we check just one coordinate of the test cases selected by an ART

algorithm, and find any bias, then we may judge that the ART algorithm has tc-bias.

Our method for measuring the tc-bias is as follows. Suppose that I is a unit square such that

each dimension ofI has the range of value as[0,1). We choose a certain coordinate, say the 1st

coordinate, and divide it intom equal-sized subdomains,[0,1/m), [1/m,2/m), · · · , [(m−1)/m,1).

Then, a set of test cases are generated using an ART algorithm. For each subdomain, we record the

number of test cases whose 1st coordinates are inside this subdomain. The normalized frequency

of points inside each subdomain is then calculated. Such a process will be repeated for a sufficient

number of times so that reliable average values of frequencies are obtained within a 95% confi-

dence level, and a±5% accuracy range. Based on the values of the collected average normalized

frequencies for thesem subdomains, we calculate two more statistics: i) the standard deviation

of thesem average normalized frequencies, denoted bystdev; and ii) the difference between the

maximal and minimal values of thesem average normalized frequencies, denoted bymax−min.

The smallermax−minandstdevare, the lower tc-bias an ART algorithm has.

We used the above method to measure the tc-biases of FSCS-ART, RRT, and pure RT in 1D,

2D, 3D, and 4D spaces.m is set to 128, and|E| is set to 10, 100, 1000, and 10,000. Because the

frequency distributions of test cases of FSCS-ART and RRT are similar to each other, we only plot

the frequency distribution graph of FSCS-ART in Fig. 1. The values ofmax−min, andstdevfor

FSCS-ART, RRT, and RT (which quantitatively describe the degrees of tc-biases for these three
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Figure 1. Frequency distribution of the first coordinate of test cases generated by FSCS-
ART.
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testing methods) are summarized in Table 1. In Fig. 1, the x-,and y-axes denote the locations

of the first dimension’s subdomains, and the normalized frequencies of test cases inside these

subdomains, respectively. We found that the test case distribution of RT is always uniform no

matter how many test cases were generated, which is theoretically expected. Therefore, we only

plot the frequency distribution of RT where|E| = 10000. Note that, although RT does not have

any tc-bias, that does not mean that RT is better than ART in terms of the F-measure.

Table 1. Values of max−min, and stdevfor FSCS-ART, RRT, and RT

N
testing |E| = 10 |E| = 100 |E| = 1000 |E| = 10000
strategy max−min stdev max−min stdev max−min stdev max−min stdev

1
RT 4.70E-04 8.70E-05 1.60E-04 3.04E-05 9.90E-04 1.86E-04 3.47E-04 6.14E-05
FSCS-ART 1.08E-02 1.66E-03 2.20E-03 2.52E-04 4.45E-04 8.55E-05 1.00E-04 2.07E-05
RRT 9.09E-03 1.44E-03 2.04E-03 2.35E-04 4.05E-04 7.83E-05 1.20E-04 2.27E-05

2
RT 4.25E-04 9.01E-05 1.58E-04 2.68E-05 9.20E-04 2.20E-04 3.50E-04 5.78E-05
FSCS-ART 1.01E-02 2.38E-03 8.57E-03 1.29E-03 6.28E-03 7.01E-04 1.76E-03 2.05E-04
RRT 1.14E-02 2.65E-03 1.34E-02 1.88E-03 1.01E-02 1.06E-03 2.09E-03 2.50E-04

3
RT 3.31E-04 7.42E-05 1.72E-04 3.20E-05 1.02E-03 1.93E-04 3.12E-04 5.89E-05
FSCS-ART 9.10E-03 2.51E-03 8.52E-03 1.70E-03 8.29E-03 1.20E-03 6.81E-03 8.00E-04
RRT 1.20E-02 3.22E-03 1.78E-02 3.18E-03 1.79E-02 2.37E-03 1.38E-02 1.52E-03

4
RT 4.90E-04 9.35E-05 1.52E-04 2.82E-05 8.55E-04 2.04E-04 3.61E-04 6.45E-05
FSCS-ART 9.31E-03 2.59E-03 8.14E-03 1.89E-03 8.26E-03 1.48E-03 7.86E-03 1.13E-03
RRT 1.31E-02 3.67E-03 1.93E-02 3.93E-03 2.06E-02 3.17E-03 1.78E-02 2.32E-03

The experimental data of Table 1, and Fig. 1 show that both FSCS-ART, and RRT have certain

tc-biases, and the tc-biases become higher with the increase of N, as well as with the decrease of

|E|. Further investigation of the frequency distribution graphs show that points from the boundary

part of I have higher probabilities to be selected as test cases than those from the central part ofI .

Moreover, all frequency distributions are symmetric with respect to the center ofI .

Having quantified the tc-biases of FSCS-ART, and RRT, we can then design a new test profile

for their candidate generation processes. The aim of such a test profile is to improve the even

distribution of test cases for FSCS-ART, and RRT, to improvetheir failure detection capabilities.

The following section describes how to design a proper test profile for such a purpose.
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3.2. Designing a non-uniform distribution as a test profile

To offset the tc-biases of FSCS-ART, and RRT, the new test profile for the candidate generation

process should have the following essential features.

• The probability distribution in the test profile must be dynamic throughout the testing process;

that is, the test profile should be changeable asE changes because the amount of tc-bias to be

offset varies asE changes.

• The elements in the central part must have a higher probability of being selected as candidates

than the elements in the boundary part because the candidates from the central part have a

lower probability of being selected as the next test case.

• The probability distribution must be symmetric with respect to the center ofI because the

distribution of test cases is also symmetric with respect tothe center ofI .

Many non-uniform distributions have the above properties.A simple example is alinear com-

binationof two uniform-distributed random variables.

Y = αX1+(1−α)X2, (2)

where 0≤ α ≤ 0.5. X1, andX2 are two random variables which are both uniformly distributed in

[0,1). The probability density function (pdf) ofY, denoted byfY(y), is

fY(y) =



























































0 , when y < 0 ory≥ 1

y
α(1−α)

, when 0≤ y < α

1
(1−α)

, when α ≤ y < 1−α

1−y
α(1−α)

, when 1−α ≤ y < 1

(3)
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Appendix A describes how to derivefY(y), and Fig. 2 shows distributions ofY for variousα.
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Figure 2. The probability density function of Y.

3.3. Our approach

We propose to generate candidates according to 2 instead of the uniform distribution; as a result,

more candidates are likely to be chosen from the center ofI than from the edge. The parameterα

in 2, and 3 decides how likely candidates are to be selected from the center. In each dimension,

for each round of test case selection,α is dynamically chosen as follows.

For ease of illustration, assume that each dimension ofI has the value range[0,1), and is equally

divided into two subranges: thecentral subrangeconsisting of[0.25,0.75); and theboundary

subrangeconsisting of[0,0.25), and[0.75,1). We then define the following two parameters.

• The normalized ratio of the l th coordinate of E (the set of all already executed test

cases) being located in the boundary subrange of thel th dimension of I (denoted by

pl
tc−boundary). For a non-empty set of executed test casesE = {e1,e2, · · · ,en}, their l th co-

15



ordinates are denoted bye1l ,e2l , · · · ,enl, respectively, where 0≤ eil < 1 (i = 1,2, · · · ,n). We

defineEl
tc−boundary= {eil |0≤ eil < 0.25 or 0.75≤ eil < 1}. pl

tc−boundary is defined as

pl
tc−boundary=

|El
tc−boundary|

|E|
(4)

Note that the values ofpl
tc−boundaryfor FSCS-ART, and RRT are usually larger than 0.5.

• The probability of the l th coordinate of a random candidate to be selected from the

central subrange of the l th dimension of I (denoted byPl
can−central). For a candidatec

randomly generated according to 2, itsl th coordinate is denoted bycl , where 0≤ cl < 1.

Pl
can−central is defined as the probability of 0.25≤ cl < 0.75. The value ofPl

can−central is

decided byα in 2, and 3, as follows.

Pl
can−central =















1
2(1−α)

, when 0≤ α < 0.25

1−
1

16α(1−α)
, when 0.25≤ α ≤ 0.5

(5)

Appendix B contains the deduction of 5. Note thatPl
can−central is within [0.5,0.75].

Our approach uses the following three steps to decide the value ofα for each dimension, suc-

cessively after each new test case is selected.

1. For each coordinate, measurepl
tc−boundaryalong the testing process, wherel = 1,2, · · · ,N.

2. We propose to offset the tc-biases of FSCS-ART, and RRT by the bias on the center brought

by our test profile. The value ofPl
can−central (which indicates how likely a candidate will be

selected from the central subrange) is set as close topl
tc−boundary(which indicates the ratio of

executed test cases in the boundary subrange) as possible. Considering different value ranges

of Pl
can−central, andpl

tc−boundary, we define thes-expected value ofPl
can−central as
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s−expected value ofPl
can−central =



















0.5 , when pl
tc−boundary< 0.5

pl
tc−boundary, when 0.5≤ pl

tc−boundary≤ 0.75

0.75 , when pl
tc−boundary> 0.75.

(6)

3. Use 5 to calculate a value ofα such thatPl
can−central satisfies 6.

1. Input an integerk, wherek > 1.
2. Setn = 0, E = {}, C = {}, andreveal= false.
3. Setα1 = α2 = · · · = αN = 0.5, whereN denotes the dimension ofI .
4. while (not reveal)
5. if (n = 0)
6. Randomly generate a test caset from I , according to a uniform distribution.
7. else
8. M = 0.
9. Randomly generatek candidatesc1,c2, · · · ,ck from I , where each coordinatec jl of a candidate

c j is generated based onαl , and according to 2,j = 1,2, · · · ,k, andl = 1,2, · · · ,N.
10. Store these candidates intoC.
11. for each candidatec j ∈C, where j = 1,2, · · · ,k

12. Calculatem=
n

min
i=1

dist(c j ,ei), whereei ∈ E.

13. if (m> M)
14. SetM = m, andb = j.
15. end if
16. end for
17. Sett = cb.
18. end if
19. Uset to test the target program.
20. if (t reveals a failure)
21. Setreveal= true.
22. else
23. Storet into E, and incrementn by 1.
24. Calculatepl

tc−boundary, and thes-expected value ofPl
can−central for each coordinate according to

4, and 6, respectively, wherel = 1,2, · · · ,N.
25. Calculate the values ofα1,α2, · · · ,αN according to 5.
26. end if
27.end while
28. Report the failure detected, and exit.

Figure 3. The algorithm of FSCS-ART-DNC.

The new approach generates candidates according to separate non-uniform distributions in each

dimension, which are dynamically tuned along the testing process. We name the new approach

adaptive random testing with dynamic non-uniform candidate distribution(ART-DNC). Note that

17



1. Input an integermaxTrial, and a real numberinitialR, wheremaxTrial> 0 andinitialR > 0.
2. Setn = 0, E = {}, andreveal= false.
3. Setα1 = α2 = · · · = αN = 0.5, whereN denotes the dimension ofI .
4. while (not reveal)
5. if (n = 0)
6. Randomly generate a test caset from I , according to a uniform distribution.
7. else
8. SetnoTrial = 0, R= initialR, andoutside= false.
9. for each elementei ∈ E, wherei = 1,2, · · · ,n

10. Determine a circular exclusion zonezi , whose size is set asR·|I ||E| .
11. end for
12. while (not outside)
13. IncrementnoTrial by 1.
14. if (noTrial = maxTrial)
15. SetnoTrial = 0 andR= max{0,R−0.1}.
16. for each elementei ∈ E, wherei = 1,2, · · · ,n

17. Determine a circular exclusion zonezi , whose size is set asR·|I ||E| .
18. end for
19. end if
20. Randomly generate a candidatec from I , where each coordinatecl of c is generated based

on αl ; and according to Equation 2, andl = 1,2, · · · ,N.

21. if (c /∈
⋃|E|

i=1zi)
22. Setoutside= true, andt = c.
23. end if
24. end while
25. end if
26. Uset to test the target program.
27. if (t reveals a failure)
28. Setreveal= true.
29. else
30. Storet into E, and incrementn by 1.
31. Calculatepl

tc−boundary, and thes-expected value ofPl
can−central for each coordinate according to

4, and 6, respectively, wherel = 1,2, · · · ,N.
32. Calculate the values ofα1,α2, · · · ,αN according to 5.
33. end if
34.end while
35. Report the failure detected, and exit.

Figure 4. The algorithm of RRT-DNC.
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there is a family of software testing methods, namelystatistical testing[11],[24], which also ran-

domly generates program inputs according to some non-uniform distributions, which are in turn

based on some criteria of either the program structure or thefunctionality. Although our approach

also generates random inputs non-uniformly, our purpose isto distribute test cases more evenly,

and hence to detect software failures more effectively, without aiming at achieving other criteria

(such as program function or structure).

We propose two ART-DNC algorithms, namelyFSCS-ART-DNC, andRRT-DNC, as shown in

Figs. 3, and 4, respectively. As a reminder, the test case identification processes of the new ART-

DNC algorithms remain the same as those of their counterparts. The aim of using the non-uniform

distribution in the candidate generation processes is to improve the failure detection capability of

ART, so we call this non-uniform profile a failure driven testprofile.

3.4. Test case distributions of new algorithms

Prior to further research, we must check whether using the non-uniform test profile for candidate

generation results in a more even spread of test cases. Only then will it make sense to evaluate the

failure detection capabilities of ART-DNC. We therefore repeated the simulations in Section 3.1,

but instead using FSCS-ART-DNC, and RRT-DNC. The simulations showed similar frequency dis-

tributions of test cases for FSCS-ART-DNC, and RRT-DNC. Therefore, we only plot the frequency

distribution graph of FSCS-ART-DNC in Fig. 5. For ease of comparison, we replot the test case

distribution of pure RT (the same as that in Fig. 1), which is expected to be uniform. The values of

max−min, andstdevfor FSCS-ART-DNC,and RRT-DNC are summarized in Table 2.

We compared the normalized frequencies (Figs. 1, and 5); andtheir related values ofmax−min,

andstdev(Tables 1, and 2), and observed that the test profile used in ART-DNC does offset the
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5.a Frequency distribution for 1D FSCS-ART-DNC
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5.c Frequency distribution for 3D FSCS-ART-DNC
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Figure 5. Frequency distribution of one coordinate of test cases generated by FSCS-ART-
DNC
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tc-biases of FSCS-ART, and RRT.

Table 2. Values of max−min, and stdevfor FSCS-ART-DNC, and RRT-DNC

N
testing |E| = 10 |E| = 100 |E| = 1000 |E| = 10000
strategy max−min stdev max−min stdev max−min stdev max−min stdev

1
FSCS-ART-DNC 7.63E-03 1.16E-03 1.64E-03 1.52E-04 7.00E-04 9.52E-05 3.03E-04 3.71E-05
RRT-DNC 5.50E-03 9.03E-04 1.42E-03 1.30E-04 5.70E-04 8.19E-05 2.29E-04 3.03E-05

2
FSCS-ART-DNC 3.40E-03 1.00E-03 2.94E-03 5.48E-04 2.19E-03 3.07E-04 9.63E-04 1.12E-04
RRT-DNC 4.60E-03 1.42E-03 5.53E-03 9.68E-04 5.11E-03 5.62E-04 1.37E-03 1.60E-04

3
FSCS-ART-DNC 2.65E-03 8.88E-04 3.38E-03 8.20E-04 4.58E-03 7.00E-04 3.77E-03 4.18E-04
RRT-DNC 4.76E-03 1.63E-03 7.74E-03 1.80E-03 7.92E-03 1.27E-03 6.51E-03 7.37E-04

4
FSCS-ART-DNC 2.80E-03 9.43E-04 5.38E-03 1.02E-03 7.14E-03 1.03E-03 7.25E-03 8.75E-04
RRT-DNC 6.49E-03 2.27E-03 9.08E-03 2.06E-03 9.80E-03 1.73E-03 7.76E-03 1.25E-03

We further investigate the test case distribution of ART-DNC algorithms by repeating the simu-

lations in [4] on FSCS-ART-DNC, and RRT-DNC. They distribute their test cases similarly. There-

fore, we only plot discrepancy, and dispersion for FSCS-ART-DNC, with previous FSCS-ART’s

data for ease of comparison, in Figs. 6, and 7, respectively.The simulations results show that ART-

DNC algorithms usually have smaller values of discrepancy than the original ART algorithms, and

they have similar values of dispersion.

In summary, the experimental results have demonstrated that our approach achieves a more even

spread of test cases. By using such a simple failure driven test profile (linear combination of two

uniform-distributed variables) for candidate generation, we are able to achieve a more even test

case distribution of ART.

3.5. Failure detection capabilities of new algorithms

We conducted a series of simulations to investigate whetherthe more even test case distributions

would improve the failure detection capability. We follow the simulation procedure as described

in Section 2.3. We first investigated the failure detection capabilities of the new algorithms when

failure-causing inputs are well clustered into one region.The experimental settings are as follows.
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Figure 6. Comparison of discrepancy between FSCS-ART-DNC, and FSCS-ART.
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Figure 7. Comparison of dispersion between FSCS-ART-DNC, and FSCS-ART.

• N: 1, 2, 3, and 4.

• θ : 0.75, 0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01, 0.0075, 0.005, 0.0025, 0.001, 0.00075,

0.0005, 0.00025, 0.0001, 0.000075, and 0.00005.

• Failure pattern: a single square/cubic failure region is randomly placed insideI .

The results of the simulations are reported in Figs. 8, and 9.For ease of comparison, the simu-

lation results of FSCS-ART, and RRT under the same experimental settings are also plotted.

Based on the experimental data, we have the following observations.

• Compared with the original FSCS-ART, and RRT algorithms, both FSCS-ART-DNC, and

RRT-DNC algorithms have better or similar failure detection capabilities. On average, in

1D, 2D, 3D, and 4D spaces, FSCS-ART-DNC improves the failuredetection capability of

FSCS-ART by 1.65%, 6.66%, 10.35%, and 15.00%, respectively; and the performance im-

provements of RRT-DNC over RRT are 0.73%, 4.00%, 10.84%, and17.38%, respectively.

• The higherN, or higherθ , the better the performance improvement of ART-DNC algorithms

over their counterparts. In 1D space, FSCS-ART-DNC, and FSCS-ART have similar failure
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Figure 8. Comparison of failure detection capability between FSCS-ART-DNC, and FSCS-
ART

0.5

0.6

0.7

0.8

0.9

1.0

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

RRT RRT-DNC

9.a RRT-DNC vs. RRT in 1D space

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

RRT RRT-DNC

9.b RRT-DNC vs. RRT in 2D space

25



0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

RRT RRT-DNC

9.c RRT-DNC vs. RRT in 3D space

0.7

1.0

1.3

1.6

1.9

2.2

1.00E-051.00E-041.00E-031.00E-021.00E-011.00E+00

A
R

T
 F

-r
a

ti
o

 =
 F

A
R

T
 /

 F
R

T

RRT RRT-DNC

9.d RRT-DNC vs. RRT in 4D space

Figure 9. Comparison of failure detection capability between RRT-DNC, and RRT

detection capabilities; but in 4D space, the performance ofFSCS-ART-DNC is 14.64%, or

40.03% better than FSCS-ART whenθ is 0.0025, or 0.25, respectively.

Both ART-DNC algorithms can distribute their test cases more evenly than the original ART

algorithms, so it is intuitively expected that the former have better failure detection capabilities

than the latter. Thus, the first observation is consistent with our expectation. It has been shown

in [4] that the test case distributions of the original algorithms are less even when eitherθ or N

is higher. Therefore, it is understandable to have the second observation that the new ART-DNC

algorithms outperform their counterparts more under the situations of higherθ , and higherN.

BesidesN andθ , the performance of ART algorithms also depends on: a) the compactness of

the failure region, b) the number of failure regions, and c) the size of any existing predominant

failure region [6]. We conducted further simulations to investigate the performance of ART-DNC

algorithms under various versions of such situations. As shown in Figs. 8, and 9, FSCS-ART-

DNC, and RRT-DNC have similar trends of failure detection capabilities, so we only conducted

the simulations on FSCS-ART-DNC with the following experimental settings.
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• N: 2, 3, and 4.

• θ : 0.005, and 0.001.

• Experiment to investigate the impact of the compactness of failure region on the failure de-

tection capability.

– Failure pattern: a single rectangular/cuboid region is randomly placed insideI . The ratios

among edge lengths of the rectangular/cuboid region are 1 :γ, 1 : γ : γ, and 1 :γ : γ : γ in

2D, 3D, and 4D spaces, respectively, whereγ ≥ 1.

– γ: 1, 4, 7, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. As explained in [6], the largerγ is,

the less compact the failure region is.

• Experiment to investigate the impact of the number of failure regions on the failure detection

capability.

– Failure pattern: a number of square/cubic regions are randomly placed insideI . Suppose

that there aren failure regions, denoted byR1,R2, · · · ,Rn, respectively. For all regions,

|Ri | =
ρi

∑n
j=1ρ j

·θ · |I |, whereρi is a random number uniformly distributed in[0,1), and

i = 1,2, · · · ,n.

– The number of failure regions: 1, 4, 7, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100.

• Experiment to investigate the impact of the existence, and the size of a predominant failure

region on the failure detection capability.

– Failure pattern: a number of square/cubic regions are randomly placed insideI . Suppose

that there aren failure regions, denoted byR1,R2, · · · ,Rn, respectively. For one region

Rn, set |Rn| = ν · θ · |I |, whereν = 0.3,0.5 and 0.8. For all the other regions,|Ri| =
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ρi

∑n−1
j=1 ρ j

·(1−ν) ·θ · |I |, whereρi is a random number uniformly distributed in[0,1), and

i = 1,2, · · · ,n−1.

– The number of failure regions: 1, 4, 7, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100.

The simulations showed that, similar to FSCS-ART, FSCS-ART-DNC has a poorer failure de-

tection capability when: a) the failure region is less compact, b) the number of failure regions

is larger, or c) the size of the predominant failure region issmaller. However, FSCS-ART-DNC

outperforms FSCS-ART in most scenarios, and the performance improvement becomes more sig-

nificant with the increase ofN or θ . Because the performance improvements of FSCS-ART-DNC

over FSCS-ART for the cases ofθ = 0.005, andθ = 0.001 are similar to each other, we only report

the experimental results under the situation ofθ = 0.005 in Figs. 10, 11, and 12.
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Figure 10. Failure detection capabilities of FSCS-ART-DNC on a rectangular/cuboid fail-
ure region when θ = 0.005.

4. Conclusions

RT, a fundamental software testing method, usually selectstest cases according to a uniform dis-

tribution (for debug testing), or an operational profile (for reliability assessment). Failure detection

capability is an important attribute of any testing method.Generally speaking, the better failure

detection capability a testing method has, the more effectively program bugs can be removed, and
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Figure 11. Failure detection capabilities of FSCS-ART-DNC on multiple failure regions
when θ = 0.005.

thus the more significantly the software reliability may be improved. Neither the operational pro-

file nor the uniform distribution makes use of any information about the probability distribution

of failure-causing inputs. Therefore, RT has often been criticized to be likely to have a poor fail-

ure detection capability. Recently, motivated by the observation that failure-causing inputs are

clustered into contiguous failure regions, Chenet al. proposed adaptive random testing (ART)

to enhance the failure detection capability of RT. The basicprinciple of ART is to evenly spread

random test cases over the input domain. Many ART algorithmsrandomly generate test case can-

didates according to uniform distribution, like RT in the context of debug testing. But they further

use some criteria to identify test cases among candidates soas to ensure an even spread of executed

test cases. There have been studies to enhance ART by distributing test cases more evenly, but all

of them have adopted the approach of enhancing the test case identification process.

In this paper, motivated by the argument that the uniform-distributed test profile is not designed

to ensure a good failure detection capability of RT, we proposed to use a different test profile

at the candidate generation process. As an example of illustration, we selected a dynamic non-

uniform distribution as the failure driven test profile to guide the random selection of candidates.

We integrated this new test profile with the test case identification criteria of some existing ART

algorithms, and developed a family of new ART algorithms, namely adaptive random testing with
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Figure 12. Failure detection capabilities of FSCS-ART-DNC on multiple failure regions
with one predominant region when θ = 0.005.
dynamic non-uniform candidate distribution (ART-DNC). Our experimental results have shown

that test cases selected by the ART-DNC algorithms are more evenly distributed than those selected

by the corresponding ART algorithms, and that ART-DNC algorithms have better failure detection

capabilities than their counterparts.

Note that the basic idea of our approach is not restricted to improve FSCS-ART, and RRT, but

shall be applicable to enhance other ART algorithms. As a pilot study, we have only tried one

non-uniform distribution as the new test profile for ART/RT.It is worthwhile to further investi-

gate whether, and to what extent, other distributions can beused to enhance the failure detection

capability of ART/RT.
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A. Derivation of the probability density function of Y

The probability density functions (pdf) ofX1, andX2 are

fX1(x1) =







0, when x1 < 0 orx1 ≥ 1

1, when 0≤ x1 < 1
, fX2(x2) =







0, when x2 < 0 orx2 ≥ 1

1, when 0≤ x2 < 1
(7)

Then, the probability distribution function (PDF) ofY, denoted byFY(y), can be calculated as

FY(y) = Pr(Y ≤ y) = Pr(αX1+(1−α)X2 ≤ y)

=

∫∫

αx1+(1−α)x2≤y

fX1(x1) fX2(x2)dx1dx2 =

∫ ∞

−∞

[

∫

y−(1−α)x2
α

−∞
fX1(x1)dx1

]

fX2(x2)dx2 (8)

Then, the pdf ofY, denoted byfY(y), can be calculated as

fY(y) =
d
dy

FY(y) =
1
α

∫ ∞

−∞
fX1

[

y− (1−α)x2

α

]

fX2(x2)dx2 (9)

Obviously, when 0≤
y− (1−α)x2

α
< 1, i.e.,

y−α
1−α

< x2 ≤
y

1−α
, fX1

[

y− (1−α)x2

α

]

= 1;

otherwise,fX1

[

y− (1−α)x2

α

]

= 0. Therefore,fY(y) can be calculated by the following steps.

• Wheny < 0, fY(y) = 0.

• Wheny≥ 1, fY(y) = 0.

• When 0≤ y < α, fY(y) =
1
α

∫
y

1−α

0
dx2 =

y
α(1−α)

.

• Whenα ≤ y < 1−α, fY(y) =
1
α

∫
y

1−α

y−α
1−α

dx2 =
1

1−α
.

• When 1−α ≤ y < 1, fY(y) =
1
α

∫ 1

y−α
1−α

dx2 =
1−y

α(1−α)
.

B. Derivation of Pl
can−central

As defined in Section 3.3,Pl
can−central refers to the probability of a point being within

[0.25,0.75).
Pl

can−central =

∫ 0.75

0.25
fY(y)dy= 2

∫ 0.5

0.25
fY(y)dy (10)
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• When 0≤ α < 0.25,Pl
can−central can be calculated as

Pl
can−central = 2

∫ 0.5

0.25

1
1−α

dy =
1

2(1−α)
(11)

• When 0.25≤ α ≤ 0.5, Pl
can−central can be calculated as

Pl
can−central = 2

∫ α

0.25

y
α(1−α)

dy+2
∫ 0.5

α

1
1−α

dy =
y2

α(1−α)

∣

∣

∣

∣

α

0.25
+

2y
1−α

∣

∣

∣

∣

0.5

α

=
α2−0.252

α(1−α)
+

1−2α
1−α

=
−α2 +α −0.0625

α(1−α)

= 1−
1

16α(1−α)
(12)
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