1,118 research outputs found

    Initial specifications for van and aircraft

    Get PDF
    Proposed testing program for strapdown inertial system containing platform gyros and pendulous gyro

    GN&C Engineering Best Practices for Human-Rated Spacecraft Systems

    Get PDF
    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process

    SIRU utilization. Volume 1: Theory, development and test evaluation

    Get PDF
    The theory, development, and test evaluations of the Strapdown Inertial Reference Unit (SIRU) are discussed. The statistical failure detection and isolation, single position calibration, and self alignment techniques are emphasized. Circuit diagrams of the system components are provided. Mathematical models are developed to show the performance characteristics of the subsystems. Specific areas of the utilization program are identified as: (1) error source propagation characteristics and (2) local level navigation performance demonstrations

    Quality-aware Content Adaptation in Digital Video Streaming

    Get PDF
    User-generated video has attracted a lot of attention due to the success of Video Sharing Sites such as YouTube and Online Social Networks. Recently, a shift towards live consumption of these videos is observable. The content is captured and instantly shared over the Internet using smart mobile devices such as smartphones. Large-scale platforms arise such as YouTube.Live, YouNow or Facebook.Live which enable the smartphones of users to livestream to the public. These platforms achieve the distribution of tens of thousands of low resolution videos to remote viewers in parallel. Nonetheless, the providers are not capable to guarantee an efficient collection and distribution of high-quality video streams. As a result, the user experience is often degraded, and the needed infrastructure installments are huge. Efficient methods are required to cope with the increasing demand for these video streams; and an understanding is needed how to capture, process and distribute the videos to guarantee a high-quality experience for viewers. This thesis addresses the quality awareness of user-generated videos by leveraging the concept of content adaptation. Two types of content adaptation, the adaptive video streaming and the video composition, are discussed in this thesis. Then, a novel approach for the given scenario of a live upload from mobile devices, the processing of video streams and their distribution is presented. This thesis demonstrates that content adaptation applied to each step of this scenario, ranging from the upload to the consumption, can significantly improve the quality for the viewer. At the same time, if content adaptation is planned wisely, the data traffic can be reduced while keeping the quality for the viewers high. The first contribution of this thesis is a better understanding of the perceived quality in user-generated video and its influencing factors. Subjective studies are performed to understand what affects the human perception, leading to the first of their kind quality models. Developed quality models are used for the second contribution of this work: novel quality assessment algorithms. A unique attribute of these algorithms is the usage of multiple features from different sensors. Whereas classical video quality assessment algorithms focus on the visual information, the proposed algorithms reduce the runtime by an order of magnitude when using data from other sensors in video capturing devices. Still, the scalability for quality assessment is limited by executing algorithms on a single server. This is solved with the proposed placement and selection component. It allows the distribution of quality assessment tasks to mobile devices and thus increases the scalability of existing approaches by up to 33.71% when using the resources of only 15 mobile devices. These three contributions are required to provide a real-time understanding of the perceived quality of the video streams produced on mobile devices. The upload of video streams is the fourth contribution of this work. It relies on content and mechanism adaptation. The thesis introduces the first prototypically evaluated adaptive video upload protocol (LiViU) which transcodes multiple video representations in real-time and copes with changing network conditions. In addition, a mechanism adaptation is integrated into LiViU to react to changing application scenarios such as streaming high-quality videos to remote viewers or distributing video with a minimal delay to close-by recipients. A second type of content adaptation is discussed in the fifth contribution of this work. An automatic video composition application is presented which enables live composition from multiple user-generated video streams. The proposed application is the first of its kind, allowing the in-time composition of high-quality video streams by inspecting the quality of individual video streams, recording locations and cinematographic rules. As a last contribution, the content-aware adaptive distribution of video streams to mobile devices is introduced by the Video Adaptation Service (VAS). The VAS analyzes the video content streamed to understand which adaptations are most beneficial for a viewer. It maximizes the perceived quality for each video stream individually and at the same time tries to produce as little data traffic as possible - achieving data traffic reduction of more than 80%

    Intrepid: A Mission to Pluto

    Get PDF
    A proposal for an exploratory spacecraft mission to Pluto/Charon system was written in response to the request for proposal for an unmannned probe to pluto (RFP). The design requirements of the RFP are presented and under the guidance of these requirements, the spacecraft Intrepid was designed. The RPF requirement that was of primary importance is the minimization of cost. Also, the reduction of flight time was of extreme importance because the atmosphere of Pluto is expected to collapse close to the Year 2020. If intrepid should arrive after the collapse, the mission would be a failure; for Pluto would be only a solid rock of ice. The topics presented include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion subsystem; (4) structural subsystem; (5) command, control, and communications; and (6) attitude and articulation control

    Flight Technology Improvement

    Get PDF
    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems

    Key technologies for safe and autonomous drones

    Get PDF
    Drones/UAVs are able to perform air operations that are very difficult to be performed by manned aircrafts. In addition, drones' usage brings significant economic savings and environmental benefits, while reducing risks to human life. In this paper, we present key technologies that enable development of drone systems. The technologies are identified based on the usages of drones (driven by COMP4DRONES project use cases). These technologies are grouped into four categories: U-space capabilities, system functions, payloads, and tools. Also, we present the contributions of the COMP4DRONES project to improve existing technologies. These contributions aim to ease drones’ customization, and enable their safe operation.This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826610. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia, Netherlands. The total project budget is 28,590,748.75 EUR (excluding ESIF partners), while the requested grant is 7,983,731.61 EUR to ECSEL JU, and 8,874,523.84 EUR of National and ESIF Funding. The project has been started on 1st October 2019

    High Fidelity Model of Ball Screws to Support Model-based Health Monitoring

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Investigation of degradation and upgradation models for flexible unit systems: a systematic literature review

    Get PDF
    Research on flexible unit systems (FUS) with the context of descriptive, predictive, and prescriptive analysis have remarkably progressed in recent times, being now reinforced in the current Industry 4.0 era with the increased focus on integration of distributed and digitalized systems. In the existing literature, most of the work focused on the individual contributions of the above mentioned three analyses. Moreover, the current literature is unclear with respect to the integration of degradation and upgradation models for FUS. In this paper, a systematic literature review on degradation, residual life distribution, workload adjustment strategy, upgradation, and predictive maintenance as major performance measures to investigate the performance of the FUS has been considered. In order to identify the key issues and research gaps in the existing literature, the 59 most relevant papers from 2009 to 2020 have been sorted and analyzed. Finally, we identify promising research opportunities that could expand the scope and depth of FUS.The project is funded by the Department of Science and Technology, Science & Engineering Research Board (DST-SERB), Statutory Body Established through an Act of Parliament: SERB Act 2008, Government of India with Sanction Order No ECR/2016/001808, and also by FCT—Fundação para a Ciência e Tecnologia through the R&D Units Project Scope: UIDB/00319/2020
    • …
    corecore