3,130 research outputs found

    OPTIMIZATION MODELS AND METHODOLOGIES TO SUPPORT EMERGENCY PREPAREDNESS AND POST-DISASTER RESPONSE

    Get PDF
    This dissertation addresses three important optimization problems arising during the phases of pre-disaster emergency preparedness and post-disaster response in time-dependent, stochastic and dynamic environments. The first problem studied is the building evacuation problem with shared information (BEPSI), which seeks a set of evacuation routes and the assignment of evacuees to these routes with the minimum total evacuation time. The BEPSI incorporates the constraints of shared information in providing on-line instructions to evacuees and ensures that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. A mixed-integer linear program is formulated for the BEPSI and an exact technique based on Benders decomposition is proposed for its solution. Numerical experiments conducted on a mid-sized real-world example demonstrate the effectiveness of the proposed algorithm. The second problem addressed is the network resilience problem (NRP), involving an indicator of network resilience proposed to quantify the ability of a network to recover from randomly arising disruptions resulting from a disaster event. A stochastic, mixed integer program is proposed for quantifying network resilience and identifying the optimal post-event course of action to take. A solution technique based on concepts of Benders decomposition, column generation and Monte Carlo simulation is proposed. Experiments were conducted to illustrate the resilience concept and procedure for its measurement, and to assess the role of network topology in its magnitude. The last problem addressed is the urban search and rescue team deployment problem (USAR-TDP). The USAR-TDP seeks an optimal deployment of USAR teams to disaster sites, including the order of site visits, with the ultimate goal of maximizing the expected number of saved lives over the search and rescue period. A multistage stochastic program is proposed to capture problem uncertainty and dynamics. The solution technique involves the solution of a sequence of interrelated two-stage stochastic programs with recourse. A column generation-based technique is proposed for the solution of each problem instance arising as the start of each decision epoch over a time horizon. Numerical experiments conducted on an example of the 2010 Haiti earthquake are presented to illustrate the effectiveness of the proposed approach

    Highway Performance and Time-Sensitive Industries

    Get PDF
    Communities and states are using every means available to them to attract and retain economic activity. One such strategy is to plan for the changing needs of new and existing businesses. In the past two decades, firms have come to view time as one of their most precious resources. Some businesses have adopted efficiently timed production methods like just-in-time, in which inventory and safety stock are minimized; deliveries of intermediate goods at all stages of production are synchronized with suppliers so that at no point do products linger. Highway projects that reduce unanticipated delays enhance the ability of time sensitive businesses to maintain closely timed production and sales schedules. Perhaps the most important type of delay in this context is that produced by incidents, which are events that disrupt normal traffic flow. In addition to accidents, incidents include stalled vehicles, debris on the road, or other impediments to orderly flow. While they are rare events, incidents do happen, and they can greatly affect travel times, especially on roads operating at near capacity. Highway improvements can reduce the likelihood of incidents and reduce the severity of impacts when incidents do occur. How to measure increases in highway system performance for time-sensitive businesses when these systems are upgraded is a focus of this monograph. We begin by examining the changes in the business environment that precipitated the movement toward time-sensitive production. Then, from an extensive survey, we conclude that although businesses in Iowa are somewhat less time-sensitive than businesses in many other places, Iowa’s businesses anticipate tighter production schedules in the future. We show how traffic incidents and incident-produced congestion erode highway performance for time-sensitive industries. An analysis of the causes and consequences of incident-produced delays provides the foundation for our model of incident-produced delay, which we have developed to gauge highway performance for time-sensitive firms. This research was a joint effort between researchers at the University of Iowa Public Policy Center and Iowa State University’s Department of Transportation and Logistics. The Iowa Department of Transportation provided funding for this project

    Optimal Redesign of the Dutch Road Network

    Get PDF
    The Dutch national road network has been developed over several decades. In the past, roads were constructed according to the then current spatial and transportation planning philosophies. Because the existing road network is a result of a long process of successive developments, the question can be asked whether this network is the most appropriate from the current point of view, especially taking in consideration the current socio economic structure of the Netherlands. To answer this question an optimization algorithm for designing road networks has been developed. With this algorithm the Dutch road network has been redesigned based on minimization of the travel and infrastructure costs and by taking into account the socio economic structure of the Netherlands. A comparison between the existing network and the new design shows that the redesigned Dutch national road network has significantly lower total costs than the existing road network. It is found that the construction of less roads with more lanes on different locations leads to a reduction of the total travel time and the total vehicles kilometers traveled

    Intermodal Network Design and Expansion for Freight Transportation

    Get PDF
    Over the last 50 years, international trade has grown considerably, and this growth has strained the global supply chains and their underlying support infrastructures. Consequently, shippers and receivers have to look for more efficient ways to transport their goods. In recent years, intermodal transport is becoming an increasingly attractive alternative to shippers, and this trend is likely to continue as governmental agencies are considering policies to induce a freight modal shift from road to intermodal to alleviate highway congestion and emissions. Intermodal freight transport involves using more than one mode, and thus, it is a more complex transport process. The factors that affect the overall efficiency of intermodal transport include, but not limited to: 1) cost of each mode, 2) trip time of each mode, 3) transfer time to another mode, and 4) location of that transfer (intermodal terminal). One of the reasons for the inefficiencies in intermodal freight transportation is the lack of planning on where to locate intermodal facilities in the transportation network and which infrastructure to expand to accommodate growth. This dissertation focuses on the intermodal network design problem and it extends previous works in three aspects: 1) address competition among intermodal service providers, 2) incorporate uncertainty of demand and supply in the design, and 3) incorporate multi-period planning into investment decisions. The following provides an overview of the works that have been completed in this dissertation. This work formulated robust optimization models for the problem of finding near-optimal locations for new intermodal terminals and their capacities for a railroad company, which operates an intermodal network in a competitive environment with uncertain demands. To solve the robust models, a Simulated Annealing (SA) algorithm was developed. Experimental results indicated that the SA solutions (i.e. objective function values) are comparable to those obtained using GAMS, but the SA algorithm can obtain solutions faster and can solve much larger problems. Also, the results verified that solutions obtained from the robust models are more effective in dealing with uncertain demand scenarios. In a second study, a robust Mixed-Integer Linear Program (MILP) was developed to assist railroad operators with intermodal network expansion decisions. Specifically, the objective of the model was to identify critical rail links to retrofit, locations to establish new terminals, and existing terminals to expand, where the intermodal freight network is subject to demand and supply uncertainties. Addition considerations by the model included a finite overall budget for investment, limited capacities on network links and at intermodal terminals, and due dates for shipments. A hybrid genetic algorithm was developed to solve the proposed MILP. It utilized a column generation algorithm for freight flow assignment and a shortest path labeling algorithm for routing decisions. Experimental results indicated that the developed algorithm can produce optimal solutions efficiently for both small-sized and large-sized intermodal freight networks. The results also verified that the developed model outperformed the traditional network design model with no uncertainty in terms of total network cost. The last study investigated the impact of multi-period approach in intermodal network expansion and routing decisions. A multi-period network design model was proposed to find when and where to locate new terminals, expand existing terminals and retrofit weaker links of the network over an extended planning period. Unlike the traditional static model, the planning horizon was divided into multiple periods in the multi-period model with different time scales for routing and design decisions. Expansion decisions were subject to budget constraints, demand uncertainty and network disruptions. A hybrid Simulated Annealing algorithm was developed to solve this NP-hard model. Model and algorithm’s application were investigated with two numerical case studies. The results verified the superiority of the multi-period model versus the single-period one in terms of total transportation cost and capacity utilization

    A Quantitative Framework for Assessing Vulnerability and Redundancy of Freight Transportation Networks

    Get PDF
    Freight transportation networks are an important component of everyday life in modern society. Disruption to these networks can make peoples’ daily lives extremely difficult as well as seriously cripple economic productivity. This dissertation develops a quantitative framework for assessing vulnerability and redundancy of freight transportation networks. The framework consists of three major contributions: (1) a two- stage approach for estimating a statewide truck origin-destination (O-D) trip table, (2) a decision support tool for assessing vulnerability of freight transportation networks, and (3) a quantitative approach for measuring redundancy of freight transportation networks.The dissertation first proposes a two-stage approach to estimate a statewide truck O-D trip table. The proposed approach is supported by two sequential stages: the first stage estimates a commodity-based truck O-D trip table using the commodity flows derived from the Freight Analysis Framework (FAF) database, and the second stage uses the path flow estimator (PFE) concept to refine the truck trip table obtained from the first stage using the truck counts from the statewide truck count program. The model allows great flexibility of incorporating data at different spatial levels for estimating the truck O- D trip table. The results from the second stage provide us a better understanding of truck flows on the statewide truck routes and corridors, and allow us to better manage the anticipated impacts caused by network disruptions.A decision support tool is developed to facilitate the decision making system through the application of its database management capabilities, graphical user interface, GIS-based visualization, and transportation network vulnerability analysis. The vulnerability assessment focuses on evaluating the statewide truck-freight bottlenecks/chokepoints. This dissertation proposes two quantitative measures: O-D connectivity (or detour route) in terms of distance and freight flow pattern change in terms of vehicle miles traveled (VMT). The case study adopts a “what-if” analysis approach by generating the disruption scenarios of the structurally deficient bridges in Utah due to earthquakes. In addition, the potential impacts of disruptions to multiple bridges in both rural and urban areas are evaluated and compared to the single bridge failure scenarios.This dissertation also proposes an approach to measure the redundancy of freight transportation networks based on two main dimensions: route diversity and network spare capacity. The route diversity dimension is used to evaluate the existence of multiple efficient routes available for users or the degree of connections between a specific O-D pair. The network spare capacity dimension is used to quantify the network- wide spare capacity with an explicit consideration of congestion effect. These two dimensions can complement each other by providing a two-dimensional characterization of freight transportation network redundancy. Case studies of the Utah statewide transportation network and coal multimodal network are conducted to demonstrate the features of the vulnerability and redundancy measures and the applicability of the quantitative assessment methodology
    • …
    corecore