660 research outputs found

    A fault-tolerant multiprocessor architecture for aircraft, volume 1

    Get PDF
    A fault-tolerant multiprocessor architecture is reported. This architecture, together with a comprehensive information system architecture, has important potential for future aircraft applications. A preliminary definition and assessment of a suitable multiprocessor architecture for such applications is developed

    Electronic/electric technology benefits study

    Get PDF
    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria

    Aircraft electromagnetic compatibility

    Get PDF
    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting

    A survey of new technology for cockpit application to 1990's transport aircraft simulators

    Get PDF
    Two problems were investigated: inter-equipment data transfer, both on board the aircraft and between air and ground; and crew equipment communication via the cockpit displays and controls. Inter-equipment data transfer is discussed in terms of data bus and data link requirements. Crew equipment communication is discussed regarding the availability of CRT display systems for use in research simulators to represent flat panel displays of the future, and of software controllable touch panels

    Design of a fault tolerant airborne digital computer. Volume 2: Computational requirements and technology

    Get PDF
    This final report summarizes the work on the design of a fault tolerant digital computer for aircraft. Volume 2 is composed of two parts. Part 1 is concerned with the computational requirements associated with an advanced commercial aircraft. Part 2 reviews the technology that will be available for the implementation of the computer in the 1975-1985 period. With regard to the computation task 26 computations have been categorized according to computational load, memory requirements, criticality, permitted down-time, and the need to save data in order to effect a roll-back. The technology part stresses the impact of large scale integration (LSI) on the realization of logic and memory. Also considered was module interconnection possibilities so as to minimize fault propagation

    Aircraft Communication Systems - Topologies, Protocols, and Vulnerabilities

    Get PDF
    Aviation systems are facing fierce competition driven by private investments promoting the development of new avionics suites (AS). With these new AS comes the need for a faster and larger bandwidth requirement for next generation communication systems. The legacy military (MIL) standard 1553 communication system (e.g., 1Mbps) can no longer keep up with the surge in bandwidth demand requirements. The new communication systems need to be designed with a system architecture background that can enable simplistic integration with Information Technology (IT) controlled groundnetworks, military, and commercial payloads. To facilitate a seamless integration with communication architecture, the current system is highly dependent on the Ethernet based IEEE 802.3 standard. Using a standard protocol cuts down on cost and shortens time for accessibility. However, it introduces several other new problems that developers are actively working through. These problems include a loss of redundancy, lower reliability, and cyber-security vulnerabilities. The cyber-security vulnerabilities that are introduced by IEEE 802.3 Ethernet are one of the larger concerns to military defense programs, and other aviation companies. Impacts of these new communication protocols are quantified and presented as cost, redundancy, topology, and vulnerability. This review paper introduces four communication protocols that can replace heritage systems. These protocols are presented and compared against each other in redundancy, reliability, topology and security vulnerabilities in their application on aircraft, space launch vehicles and satellites

    Safety-Critical Communication in Avionics

    Get PDF
    The aircraft of today use electrical fly-by-wire systems for manoeuvring. These safety-critical distributed systems are called flight control systems and put high requirements on the communication networks that interconnect the parts of the systems. Reliability, predictability, flexibility, low weight and cost are important factors that all need to be taken in to consideration when designing a safety-critical communication system. In this thesis certification issues, requirements in avionics, fault management, protocols and topologies for safety-critical communication systems in avionics are discussed and investigated. The protocols that are investigated in this thesis are: TTP/C, FlexRay and AFDX, as a reference protocol MIL-STD-1553 is used. As reference architecture analogue point-to-point is used. The protocols are described and evaluated regarding features such as services, maturity, supported physical layers and topologies.Pros and cons with each protocol are then illustrated by a theoretical implementation of a flight control system that uses each protocol for the highly critical communication between sensors, actuators and flight computers.The results show that from a theoretical point of view TTP/C could be used as a replacement for a point-to-point flight control system. However, there are a number of issues regarding the physical layer that needs to be examined. Finally a TTP/C cluster has been implemented and basic functionality tests have been conducted. The plan was to perform tests on delays, start-up time and reintegration time but the time to acquire the proper hardware for these tests exceeded the time for the thesis work. More advanced testing will be continued here at Saab beyond the time frame of this thesis

    In-flight maintenance study Final report

    Get PDF
    Sample system analysis, MF requirements, redesign, and packaging desig

    Inductive interconnecting solutions for airworthiness standards and power-quality requirements compliance for more-electric aircraft/engine power networks

    Get PDF
    Driven by efficiency benefits, performance optimization and reduced fuel-burn, the aviation industry has witnessed a technological shift towards the broader electrification of on-board systems, known as the More-Electric Aircraft (MEA) concept. Electrical systems are now responsible for functions that previously required mechanical, hydraulic or pneumatic power sources, with a subset of these functions being critical or essential to the continuity and safety of the flight.;This trend of incremental electrification has brought along benefits such as reductions in weight and volume, performance optimization and reduced life-cycle costs for the aircraft operator. It has however also increased the necessary engine power offtake and has made the electrical networks of modern MEA larger and more complex. In pursuit of new, more efficient electrical architectures, paralleled or interconnected generation is thought to be one platform towards improved performance and fuel savings.;However, the paralleling of multiple generation sources across the aircraft can breach current design and certification rules under fault conditions. This thesis proposes and evaluates candidate interconnecting solutions to minimize the propagation of transients across the interconnected network and demonstrates their effectiveness with reference to current airworthiness standards and MIL-STD-704F power quality requirements.;It demonstrates that inductive interconnections may achieve compliance with these requirements and quantifies the estimated mass penalty incurred on the electrical architecture, highlighting how architectural and operating strategies can influence design options at a systems level. By examining the impact of protection operation speed on the electrical network, it determines that fast fault protection is a key enabling technology towards implementing lightweight and compliant interconnected architectures.;Lastly, this thesis addresses potential implications arising from alternate standards interpretations within the framework of interconnected networks and demonstrates the impact of regulatory changes on the electrical architecture and interconnecting solutions.Driven by efficiency benefits, performance optimization and reduced fuel-burn, the aviation industry has witnessed a technological shift towards the broader electrification of on-board systems, known as the More-Electric Aircraft (MEA) concept. Electrical systems are now responsible for functions that previously required mechanical, hydraulic or pneumatic power sources, with a subset of these functions being critical or essential to the continuity and safety of the flight.;This trend of incremental electrification has brought along benefits such as reductions in weight and volume, performance optimization and reduced life-cycle costs for the aircraft operator. It has however also increased the necessary engine power offtake and has made the electrical networks of modern MEA larger and more complex. In pursuit of new, more efficient electrical architectures, paralleled or interconnected generation is thought to be one platform towards improved performance and fuel savings.;However, the paralleling of multiple generation sources across the aircraft can breach current design and certification rules under fault conditions. This thesis proposes and evaluates candidate interconnecting solutions to minimize the propagation of transients across the interconnected network and demonstrates their effectiveness with reference to current airworthiness standards and MIL-STD-704F power quality requirements.;It demonstrates that inductive interconnections may achieve compliance with these requirements and quantifies the estimated mass penalty incurred on the electrical architecture, highlighting how architectural and operating strategies can influence design options at a systems level. By examining the impact of protection operation speed on the electrical network, it determines that fast fault protection is a key enabling technology towards implementing lightweight and compliant interconnected architectures.;Lastly, this thesis addresses potential implications arising from alternate standards interpretations within the framework of interconnected networks and demonstrates the impact of regulatory changes on the electrical architecture and interconnecting solutions

    Design Solutions For Modular Satellite Architectures

    Get PDF
    The cost-effective access to space envisaged by ESA would open a wide range of new opportunities and markets, but is still many years ahead. There is still a lack of devices, circuits, systems which make possible to develop satellites, ground stations and related services at costs compatible with the budget of academic institutions and small and medium enterprises (SMEs). As soon as the development time and cost of small satellites will fall below a certain threshold (e.g. 100,000 to 500,000 €), appropriate business models will likely develop to ensure a cost-effective and pervasive access to space, and related infrastructures and services. These considerations spurred the activity described in this paper, which is aimed at: - proving the feasibility of low-cost satellites using COTS (Commercial Off The Shelf) devices. This is a new trend in the space industry, which is not yet fully exploited due to the belief that COTS devices are not reliable enough for this kind of applications; - developing a flight model of a flexible and reliable nano-satellite with less than 25,000€; - training students in the field of avionics space systems: the design here described is developed by a team including undergraduate students working towards their graduation work. The educational aspects include the development of specific new university courses; - developing expertise in the field of low-cost avionic systems, both internally (university staff) and externally (graduated students will bring their expertise in their future work activity); - gather and cluster expertise and resources available inside the university around a common high-tech project; - creating a working group composed of both University and SMEs devoted to the application of commercially available technology to space environment. The first step in this direction was the development of a small low cost nano-satellite, started in the year 2004: the name of this project was PiCPoT (Piccolo Cubo del Politecnico di Torino, Small Cube of Politecnico di Torino). The project was carried out by some departments of the Politecnico, in particular Electronics and Aerospace. The main goal of the project was to evaluate the feasibility of using COTS components in a space project in order to greatly reduce costs; the design exploited internal subsystems modularity to allow reuse and further cost reduction for future missions. Starting from the PiCPoT experience, in 2006 we began a new project called ARaMiS (Speretta et al., 2007) which is the Italian acronym for Modular Architecture for Satellites. This work describes how the architecture of the ARaMiS satellite has been obtained from the lesson learned from our former experience. Moreover we describe satellite operations, giving some details of the major subsystems. This work is composed of two parts. The first one describes the design methodology, solutions and techniques that we used to develop the PiCPoT satellite; it gives an overview of its operations, with some details of the major subsystems. Details on the specifications can also be found in (Del Corso et al., 2007; Passerone et al, 2008). The second part, indeed exploits the experience achieved during the PiCPoT development and describes a proposal for a low-cost modular architecture for satellite
    • …
    corecore