70,038 research outputs found

    Online and Offline BIST in IP-Core Design

    Get PDF
    This article presents an online and offline built-in self-test architecture implemented as an SRAM intellectual-property core for telecommunication applications. The architecture combines fault-latency reduction, code-based fault detection, and architecture-based fault avoidance to meet reliability constraint

    Software dependability techniques validated via fault injection experiments

    Get PDF
    The present paper proposes a C/C++ source-to-source compiler able to increase the dependability properties of a given application. The adopted strategy is based on two main techniques: variable duplication/triplication and control flow checking. The validation of these techniques is based on the emulation of fault appearance by software fault injection. The chosen test case is a client-server application in charge of calculating and drawing a Mandelbrot fracta

    Efficient Simulation of Structural Faults for the Reliability Evaluation at System-Level

    Get PDF
    In recent technology nodes, reliability is considered a part of the standard design ¿ow at all levels of embedded system design. While techniques that use only low-level models at gate- and register transfer-level offer high accuracy, they are too inefficient to consider the overall application of the embedded system. Multi-level models with high abstraction are essential to efficiently evaluate the impact of physical defects on the system. This paper provides a methodology that leverages state-of-the-art techniques for efficient fault simulation of structural faults together with transaction-level modeling. This way it is possible to accurately evaluate the impact of the faults on the entire hardware/software system. A case study of a system consisting of hardware and software for image compression and data encryption is presented and the method is compared to a standard gate/RT mixed-level approac

    Validation of a software dependability tool via fault injection experiments

    Get PDF
    Presents the validation of the strategies employed in the RECCO tool to analyze a C/C++ software; the RECCO compiler scans C/C++ source code to extract information about the significance of the variables that populate the program and the code structure itself. Experimental results gathered on an Open Source Router are used to compare and correlate two sets of critical variables, one obtained by fault injection experiments, and the other applying the RECCO tool, respectively. Then the two sets are analyzed, compared, and correlated to prove the effectiveness of RECCO's methodology

    Covert Wireless Communication with a Poisson Field of Interferers

    Get PDF
    In this paper, we study covert communication in wireless networks consisting of a transmitter, Alice, an intended receiver, Bob, a warden, Willie, and a Poisson field of interferers. Bob and Willie are subject to uncertain shot noise due to the ambient signals from interferers in the network. With the aid of stochastic geometry, we analyze the throughput of the covert communication between Alice and Bob subject to given requirements on the covertness against Willie and the reliability of decoding at Bob. We consider non-fading and fading channels. We analytically obtain interesting findings on the impacts of the density and the transmit power of the concurrent interferers on the covert throughput. That is, the density and the transmit power of the interferers have no impact on the covert throughput as long as the network stays in the interference-limited regime, for both the non-fading and the fading cases. When the interference is sufficiently small and comparable with the receiver noise, the covert throughput increases as the density or the transmit power of the concurrent interferers increases

    Fault-tolerant sub-lithographic design with rollback recovery

    Get PDF
    Shrinking feature sizes and energy levels coupled with high clock rates and decreasing node capacitance lead us into a regime where transient errors in logic cannot be ignored. Consequently, several recent studies have focused on feed-forward spatial redundancy techniques to combat these high transient fault rates. To complement these studies, we analyze fine-grained rollback techniques and show that they can offer lower spatial redundancy factors with no significant impact on system performance for fault rates up to one fault per device per ten million cycles of operation (Pf = 10^-7) in systems with 10^12 susceptible devices. Further, we concretely demonstrate these claims on nanowire-based programmable logic arrays. Despite expensive rollback buffers and general-purpose, conservative analysis, we show the area overhead factor of our technique is roughly an order of magnitude lower than a gate level feed-forward redundancy scheme

    Integrated analysis of error detection and recovery

    Get PDF
    An integrated modeling and analysis of error detection and recovery is presented. When fault latency and/or error latency exist, the system may suffer from multiple faults or error propagations which seriously deteriorate the fault-tolerant capability. Several detection models that enable analysis of the effect of detection mechanisms on the subsequent error handling operations and the overall system reliability were developed. Following detection of the faulty unit and reconfiguration of the system, the contaminated processes or tasks have to be recovered. The strategies of error recovery employed depend on the detection mechanisms and the available redundancy. Several recovery methods including the rollback recovery are considered. The recovery overhead is evaluated as an index of the capabilities of the detection and reconfiguration mechanisms
    corecore