31,735 research outputs found

    Matroidal Degree-Bounded Minimum Spanning Trees

    Full text link
    We consider the minimum spanning tree (MST) problem under the restriction that for every vertex v, the edges of the tree that are adjacent to v satisfy a given family of constraints. A famous example thereof is the classical degree-constrained MST problem, where for every vertex v, a simple upper bound on the degree is imposed. Iterative rounding/relaxation algorithms became the tool of choice for degree-bounded network design problems. A cornerstone for this development was the work of Singh and Lau, who showed for the degree-bounded MST problem how to find a spanning tree violating each degree bound by at most one unit and with cost at most the cost of an optimal solution that respects the degree bounds. However, current iterative rounding approaches face several limits when dealing with more general degree constraints. In particular, when several constraints are imposed on the edges adjacent to a vertex v, as for example when a partition of the edges adjacent to v is given and only a fixed number of elements can be chosen out of each set of the partition, current approaches might violate each of the constraints by a constant, instead of violating all constraints together by at most a constant number of edges. Furthermore, it is also not clear how previous iterative rounding approaches can be used for degree constraints where some edges are in a super-constant number of constraints. We extend iterative rounding/relaxation approaches both on a conceptual level as well as aspects involving their analysis to address these limitations. This leads to an efficient algorithm for the degree-constrained MST problem where for every vertex v, the edges adjacent to v have to be independent in a given matroid. The algorithm returns a spanning tree T of cost at most OPT, such that for every vertex v, it suffices to remove at most 8 edges from T to satisfy the matroidal degree constraint at v

    Max-sum diversity via convex programming

    Get PDF
    Diversity maximization is an important concept in information retrieval, computational geometry and operations research. Usually, it is a variant of the following problem: Given a ground set, constraints, and a function f(⋅)f(\cdot) that measures diversity of a subset, the task is to select a feasible subset SS such that f(S)f(S) is maximized. The \emph{sum-dispersion} function f(S)=∑x,y∈Sd(x,y)f(S) = \sum_{x,y \in S} d(x,y), which is the sum of the pairwise distances in SS, is in this context a prominent diversification measure. The corresponding diversity maximization is the \emph{max-sum} or \emph{sum-sum diversification}. Many recent results deal with the design of constant-factor approximation algorithms of diversification problems involving sum-dispersion function under a matroid constraint. In this paper, we present a PTAS for the max-sum diversification problem under a matroid constraint for distances d(⋅,⋅)d(\cdot,\cdot) of \emph{negative type}. Distances of negative type are, for example, metric distances stemming from the ℓ2\ell_2 and ℓ1\ell_1 norm, as well as the cosine or spherical, or Jaccard distance which are popular similarity metrics in web and image search

    On Generalizations of Network Design Problems with Degree Bounds

    Get PDF
    Iterative rounding and relaxation have arguably become the method of choice in dealing with unconstrained and constrained network design problems. In this paper we extend the scope of the iterative relaxation method in two directions: (1) by handling more complex degree constraints in the minimum spanning tree problem (namely, laminar crossing spanning tree), and (2) by incorporating `degree bounds' in other combinatorial optimization problems such as matroid intersection and lattice polyhedra. We give new or improved approximation algorithms, hardness results, and integrality gaps for these problems.Comment: v2, 24 pages, 4 figure
    • …
    corecore